用于预防保健的远程心脏监测系统

Keunjoo Kwon, Heasoo Hwang, Hyoa Kang, Kyoung-Gu Woo, Kyuseok Shim
{"title":"用于预防保健的远程心脏监测系统","authors":"Keunjoo Kwon, Heasoo Hwang, Hyoa Kang, Kyoung-Gu Woo, Kyuseok Shim","doi":"10.1109/ICCE.2013.6486857","DOIUrl":null,"url":null,"abstract":"Remote monitoring of heart disease patients has been shown to be effective for diagnosis and detection of arrhythmias. We propose a remote cardiac monitoring system for preventive care by developing a decision support system with personalized parameters and an algorithm to predict forthcoming paroxysmal atrial fibrillations. The system consists of several physiological measuring devices, mobile gateways, point-of-care devices, and a monitoring server. The proposed prediction algorithm shows 87.5% accuracy.","PeriodicalId":6432,"journal":{"name":"2013 IEEE International Conference on Consumer Electronics (ICCE)","volume":"23 1","pages":"197-200"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A remote cardiac monitoring system for preventive care\",\"authors\":\"Keunjoo Kwon, Heasoo Hwang, Hyoa Kang, Kyoung-Gu Woo, Kyuseok Shim\",\"doi\":\"10.1109/ICCE.2013.6486857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Remote monitoring of heart disease patients has been shown to be effective for diagnosis and detection of arrhythmias. We propose a remote cardiac monitoring system for preventive care by developing a decision support system with personalized parameters and an algorithm to predict forthcoming paroxysmal atrial fibrillations. The system consists of several physiological measuring devices, mobile gateways, point-of-care devices, and a monitoring server. The proposed prediction algorithm shows 87.5% accuracy.\",\"PeriodicalId\":6432,\"journal\":{\"name\":\"2013 IEEE International Conference on Consumer Electronics (ICCE)\",\"volume\":\"23 1\",\"pages\":\"197-200\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Consumer Electronics (ICCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE.2013.6486857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE.2013.6486857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

对心脏病患者的远程监测已被证明对心律失常的诊断和检测是有效的。我们提出了一种远程心脏监测系统,通过开发具有个性化参数的决策支持系统和预测即将到来的阵发性心房颤动的算法来进行预防性护理。该系统由几个生理测量设备、移动网关、护理点设备和一个监控服务器组成。该预测算法的准确率为87.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A remote cardiac monitoring system for preventive care
Remote monitoring of heart disease patients has been shown to be effective for diagnosis and detection of arrhythmias. We propose a remote cardiac monitoring system for preventive care by developing a decision support system with personalized parameters and an algorithm to predict forthcoming paroxysmal atrial fibrillations. The system consists of several physiological measuring devices, mobile gateways, point-of-care devices, and a monitoring server. The proposed prediction algorithm shows 87.5% accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Monitoring and Controlling Industrial Cyber-Physical Systems with Digital Twin and Augmented Reality Proposal of fault detection and diagnosis system architecture for residential air conditioners based on the Internet of Things PSO and Kalman Filter-Based Node Motion Prediction for Data Collection from Ocean Wireless Sensors Network with UAV Complex activity recognition system based on cascade classifiers and wearable device data Virtualization of residential IoT functionality by using NFV and SDN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1