基于gan的超分辨率深度学习中计算时间与学习精度的权衡

JooYong Shim, Joongheon Kim, Jong-Kook Kim
{"title":"基于gan的超分辨率深度学习中计算时间与学习精度的权衡","authors":"JooYong Shim, Joongheon Kim, Jong-Kook Kim","doi":"10.1109/ICOIN50884.2021.9333991","DOIUrl":null,"url":null,"abstract":"The trade-off between accuracy and computation should be considered when applying generative adversarial network (GAN)-based image generation to real-world applications. This paper presents a simple yet efficient method based on Progressive Growing of GANs (PGGAN) to exploit the trade-off for image generation. The scheme is evaluated using the LSUN dataset.","PeriodicalId":6741,"journal":{"name":"2021 International Conference on Information Networking (ICOIN)","volume":"1 1","pages":"422-424"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Tradeoff between Computation-Time and Learning-Accuracy in GAN-based Super-Resolution Deep Learning\",\"authors\":\"JooYong Shim, Joongheon Kim, Jong-Kook Kim\",\"doi\":\"10.1109/ICOIN50884.2021.9333991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The trade-off between accuracy and computation should be considered when applying generative adversarial network (GAN)-based image generation to real-world applications. This paper presents a simple yet efficient method based on Progressive Growing of GANs (PGGAN) to exploit the trade-off for image generation. The scheme is evaluated using the LSUN dataset.\",\"PeriodicalId\":6741,\"journal\":{\"name\":\"2021 International Conference on Information Networking (ICOIN)\",\"volume\":\"1 1\",\"pages\":\"422-424\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Information Networking (ICOIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOIN50884.2021.9333991\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Information Networking (ICOIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIN50884.2021.9333991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将基于生成对抗网络(GAN)的图像生成应用于实际应用时,应考虑精度和计算之间的权衡。本文提出了一种简单而有效的基于gan渐进生长(PGGAN)的算法来利用图像生成的权衡。该方案使用LSUN数据集进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the Tradeoff between Computation-Time and Learning-Accuracy in GAN-based Super-Resolution Deep Learning
The trade-off between accuracy and computation should be considered when applying generative adversarial network (GAN)-based image generation to real-world applications. This paper presents a simple yet efficient method based on Progressive Growing of GANs (PGGAN) to exploit the trade-off for image generation. The scheme is evaluated using the LSUN dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Study on the Cluster-wise Regression Model for Bead Width in the Automatic GMA Welding GDFed: Dynamic Federated Learning for Heterogenous Device Using Graph Neural Network A Solution for Recovering Network Topology with Missing Links using Sparse Modeling Real-time health monitoring system design based on optical camera communication Multimedia Contents Retrieval based on 12-Mood Vector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1