Miranda F. Kamal, Sohila M. Elonsy, H. Labib, Sameh E. Younis
{"title":"同时MEKC-DAD和智能分光光度法测定硫代秋糖苷和依托昔布在挑战性浓度比混合物中的含量","authors":"Miranda F. Kamal, Sohila M. Elonsy, H. Labib, Sameh E. Younis","doi":"10.1515/revac-2022-0038","DOIUrl":null,"url":null,"abstract":"Abstract Potent muscle relaxant (thiocolchicoside, TCC) and nonsteroidal anti-inflammatory drug (etoricoxib, ETXB) fixed-dose combination is formulated at relatively high 1:15 and 1:7.5 ratios for TCC and ETXB, respectively. Since the minor component (TCC) has lower absorptivity, assay of TCC/ETXB tablets presents an analytical challenge. The current study presents two novel methods: first is a micellar electrokinetic capillary chromatography (MEKC). Background electrolyte is borate buffer (40 mM, pH 9.2) containing 30 mM sodium dodecyl sulfate and methanol (ratio 80:20%, v/v), measured at 210 nm. Second is a direct double A max spectrophotometric method; minor component, TCC, is measured directly at its distant λ max (373 nm), at zero absorption of ETXB. Then, a ten-fold dilution step is carried out to eliminate TCC spectral interference and ETXB is determined at its λ max (282 nm). Both drugs’ concentrations disclose obedient linearities at 2–100 μg·mL−1 in MEKC, versus 3–25 and 40–350 μg·mL−1 for TCC and ETXB, respectively, in spectrophotometry. All ICH validation elements have been fulfilled for the developed methods. MEKC and spectrophotometric assays achieve accuracy, precision, selectivity, and robustness to be recommended for industrial quality control routine analysis of TCC/ETXB pills formulated at cited ratios or even higher.","PeriodicalId":21090,"journal":{"name":"Reviews in Analytical Chemistry","volume":"10 1","pages":"137 - 145"},"PeriodicalIF":3.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simultaneous MEKC-DAD and smart spectrophotometric assays of thiocolchicoside and etoricoxib in challenging concentration ratio mixtures\",\"authors\":\"Miranda F. Kamal, Sohila M. Elonsy, H. Labib, Sameh E. Younis\",\"doi\":\"10.1515/revac-2022-0038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Potent muscle relaxant (thiocolchicoside, TCC) and nonsteroidal anti-inflammatory drug (etoricoxib, ETXB) fixed-dose combination is formulated at relatively high 1:15 and 1:7.5 ratios for TCC and ETXB, respectively. Since the minor component (TCC) has lower absorptivity, assay of TCC/ETXB tablets presents an analytical challenge. The current study presents two novel methods: first is a micellar electrokinetic capillary chromatography (MEKC). Background electrolyte is borate buffer (40 mM, pH 9.2) containing 30 mM sodium dodecyl sulfate and methanol (ratio 80:20%, v/v), measured at 210 nm. Second is a direct double A max spectrophotometric method; minor component, TCC, is measured directly at its distant λ max (373 nm), at zero absorption of ETXB. Then, a ten-fold dilution step is carried out to eliminate TCC spectral interference and ETXB is determined at its λ max (282 nm). Both drugs’ concentrations disclose obedient linearities at 2–100 μg·mL−1 in MEKC, versus 3–25 and 40–350 μg·mL−1 for TCC and ETXB, respectively, in spectrophotometry. All ICH validation elements have been fulfilled for the developed methods. MEKC and spectrophotometric assays achieve accuracy, precision, selectivity, and robustness to be recommended for industrial quality control routine analysis of TCC/ETXB pills formulated at cited ratios or even higher.\",\"PeriodicalId\":21090,\"journal\":{\"name\":\"Reviews in Analytical Chemistry\",\"volume\":\"10 1\",\"pages\":\"137 - 145\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/revac-2022-0038\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/revac-2022-0038","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 1
摘要
强效肌肉松弛剂(硫代秋糖苷,TCC)和非甾体抗炎药(依托昔布,ETXB)的固定剂量组合分别以较高的1:15和1:7.5的比例配制。由于微量成分(TCC)的吸光度较低,TCC/ETXB片的分析提出了一个分析挑战。目前研究提出了两种新方法:一是胶束电动毛细管色谱法(MEKC)。背景电解质为硼酸盐缓冲液(40 mM, pH 9.2),含有30 mM十二烷基硫酸钠和甲醇(比例80:20%,v/v),在210 nm处测量。二是直接双a max分光光度法;在ETXB的零吸收下,直接测量其远λ max (373 nm)的次要成分TCC。然后,进行10倍稀释步骤以消除TCC光谱干扰,并在λ max (282 nm)处测定ETXB。两种药物在MEKC中的浓度在2-100 μg·mL - 1范围内呈线性,而TCC和ETXB的浓度分别在3-25和40-350 μg·mL - 1范围内呈线性。所开发的方法已满足所有ICH验证要素。MEKC和分光光度测定法具有准确性,精密度,选择性和稳健性,可推荐用于工业质量控制常规分析TCC/ETXB药片在引用比率或甚至更高的配制。
Simultaneous MEKC-DAD and smart spectrophotometric assays of thiocolchicoside and etoricoxib in challenging concentration ratio mixtures
Abstract Potent muscle relaxant (thiocolchicoside, TCC) and nonsteroidal anti-inflammatory drug (etoricoxib, ETXB) fixed-dose combination is formulated at relatively high 1:15 and 1:7.5 ratios for TCC and ETXB, respectively. Since the minor component (TCC) has lower absorptivity, assay of TCC/ETXB tablets presents an analytical challenge. The current study presents two novel methods: first is a micellar electrokinetic capillary chromatography (MEKC). Background electrolyte is borate buffer (40 mM, pH 9.2) containing 30 mM sodium dodecyl sulfate and methanol (ratio 80:20%, v/v), measured at 210 nm. Second is a direct double A max spectrophotometric method; minor component, TCC, is measured directly at its distant λ max (373 nm), at zero absorption of ETXB. Then, a ten-fold dilution step is carried out to eliminate TCC spectral interference and ETXB is determined at its λ max (282 nm). Both drugs’ concentrations disclose obedient linearities at 2–100 μg·mL−1 in MEKC, versus 3–25 and 40–350 μg·mL−1 for TCC and ETXB, respectively, in spectrophotometry. All ICH validation elements have been fulfilled for the developed methods. MEKC and spectrophotometric assays achieve accuracy, precision, selectivity, and robustness to be recommended for industrial quality control routine analysis of TCC/ETXB pills formulated at cited ratios or even higher.
期刊介绍:
Reviews in Analytical Chemistry publishes authoritative reviews by leading experts in the dynamic field of chemical analysis. The subjects can encompass all branches of modern analytical chemistry such as spectroscopy, chromatography, mass spectrometry, electrochemistry and trace analysis and their applications to areas such as environmental control, pharmaceutical industry, automation and other relevant areas. Review articles bring the expert up to date in a concise manner and provide researchers an overview of new techniques and methods.