{"title":"基于深度强化学习的配送与物流管理信息检索与优化","authors":"Li Yang, E. SathishkumarV., Adhiyaman Manickam","doi":"10.4018/ijisscm.316166","DOIUrl":null,"url":null,"abstract":"Resource balance is one of the most critical concerns in the existing logistic domain within dynamic transport networks. Modern solutions are used to maximize demand and supply prediction in collaboration with these problems. However, the great difficulty of transportation networks, profound uncertainties of potential demand and availability, and non-convex market limits make conventional resource management main paths. Hence, this paper proposes an integrated deep reinforcement learning-based logistics management model (DELLMM) to increase and optimize the logistic distribution. An optimization approach can be used in inventors and price control applications. This research methodology gives the fundamentals of information retrieval and the scope of blockchain integration. The conceptual framework of use cases for an efficient logistic management system with blockchain has been discussed. This research designs the deep reinforcement learning system that can boost optimization and other business operations due to impressive improvements in generic self-learning algorithms for optimal management. Thus, the experimental results show that DELLMM improves logistics management and optimized distribution compared to other methods with the highest operability of 94.35%, latency reduction of 97.12%, efficiency of 98.01%, trust enhancement of 96.37%, and sustainability of 97.80%.","PeriodicalId":44506,"journal":{"name":"International Journal of Information Systems and Supply Chain Management","volume":"98 1","pages":"1-19"},"PeriodicalIF":0.9000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Information Retrieval and Optimization in Distribution and Logistics Management Using Deep Reinforcement Learning\",\"authors\":\"Li Yang, E. SathishkumarV., Adhiyaman Manickam\",\"doi\":\"10.4018/ijisscm.316166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resource balance is one of the most critical concerns in the existing logistic domain within dynamic transport networks. Modern solutions are used to maximize demand and supply prediction in collaboration with these problems. However, the great difficulty of transportation networks, profound uncertainties of potential demand and availability, and non-convex market limits make conventional resource management main paths. Hence, this paper proposes an integrated deep reinforcement learning-based logistics management model (DELLMM) to increase and optimize the logistic distribution. An optimization approach can be used in inventors and price control applications. This research methodology gives the fundamentals of information retrieval and the scope of blockchain integration. The conceptual framework of use cases for an efficient logistic management system with blockchain has been discussed. This research designs the deep reinforcement learning system that can boost optimization and other business operations due to impressive improvements in generic self-learning algorithms for optimal management. Thus, the experimental results show that DELLMM improves logistics management and optimized distribution compared to other methods with the highest operability of 94.35%, latency reduction of 97.12%, efficiency of 98.01%, trust enhancement of 96.37%, and sustainability of 97.80%.\",\"PeriodicalId\":44506,\"journal\":{\"name\":\"International Journal of Information Systems and Supply Chain Management\",\"volume\":\"98 1\",\"pages\":\"1-19\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Systems and Supply Chain Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijisscm.316166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Systems and Supply Chain Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijisscm.316166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MANAGEMENT","Score":null,"Total":0}
Information Retrieval and Optimization in Distribution and Logistics Management Using Deep Reinforcement Learning
Resource balance is one of the most critical concerns in the existing logistic domain within dynamic transport networks. Modern solutions are used to maximize demand and supply prediction in collaboration with these problems. However, the great difficulty of transportation networks, profound uncertainties of potential demand and availability, and non-convex market limits make conventional resource management main paths. Hence, this paper proposes an integrated deep reinforcement learning-based logistics management model (DELLMM) to increase and optimize the logistic distribution. An optimization approach can be used in inventors and price control applications. This research methodology gives the fundamentals of information retrieval and the scope of blockchain integration. The conceptual framework of use cases for an efficient logistic management system with blockchain has been discussed. This research designs the deep reinforcement learning system that can boost optimization and other business operations due to impressive improvements in generic self-learning algorithms for optimal management. Thus, the experimental results show that DELLMM improves logistics management and optimized distribution compared to other methods with the highest operability of 94.35%, latency reduction of 97.12%, efficiency of 98.01%, trust enhancement of 96.37%, and sustainability of 97.80%.
期刊介绍:
The International Journal of Information Systems and Supply Chain Management (IJISSCM) provides a practical and comprehensive forum for exchanging novel research ideas or down-to-earth practices which bridge the latest information technology and supply chain management. IJISSCM encourages submissions on how various information systems improve supply chain management, as well as how the advancement of supply chain management tools affects the information systems growth. The aim of this journal is to bring together the expertise of people who have worked with supply chain management across the world for people in the field of information systems.