基于E-CNN的混沌哈里斯鹰优化IoMT框架心脏病诊断

IF 2 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Information Technology and Control Pub Date : 2023-07-15 DOI:10.5755/j01.itc.52.2.32778
Suma Christal, Mary Sundararajan, Prabhjot Kaur, Anupama Kaushik
{"title":"基于E-CNN的混沌哈里斯鹰优化IoMT框架心脏病诊断","authors":"Suma Christal, Mary Sundararajan, Prabhjot Kaur, Anupama Kaushik","doi":"10.5755/j01.itc.52.2.32778","DOIUrl":null,"url":null,"abstract":"In the current state of medical research, the diagnosis of heart disease has become a challenging medical objective. This diagnosis is dependent on a thorough and accurate review of the detailed medical test results and medical background of the patient. With the aid of the internet of things (IoT) and the huge advancements in the field of deep learning, researchers aim to produce intelligent monitoring systems that assist physicians in both predicting and diagnosing disorders. In this context, this work proposes a novel prediction model based on deep learning and Internet-of-Medical-Things for the efficient and real-time diagnosis of heart disease. In this work, data from the Cleveland dataset is used for training the proposed model and further the data that is gathered from the sensors in the IoMT environment is used for testing the prediction capability of the model. Chaotic Harris Hawk optimization algorithm is employed for the feature extraction from the data and these extracted features are further passed on to the classification stage where Enhanced Convolutional Neural Networks are utilized to classify whether the patient is affected by heart disease or not. In order to evaluate the performance of the proposed model, it is compared with the Machine learning models such as Support Vector Machine with Ant Colony Optimization(SVM-ACO), Random Forest with Particle Swarm Optimization(RF-PSO), Naive Bayes with Harris Hawk Optimization(NB-HHO), K Nearest Neighbor with Spiral Optimization(KNN-SPO). Also, the proposed model is compared against deep learning architectures such as VGG-16, ResNet, AlexNet,ZFNet. Further, the proposed model also outperforms two existing works taken from the literature, Faster R-CNN-ALO, and MDCNN-AEHO, with a higher accuracy of 99.2%.","PeriodicalId":54982,"journal":{"name":"Information Technology and Control","volume":"239 2 1","pages":"500-514"},"PeriodicalIF":2.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heart Diseases Diagnosis Using Chaotic Harris Hawk Optimization with E-CNN for IoMT Framework\",\"authors\":\"Suma Christal, Mary Sundararajan, Prabhjot Kaur, Anupama Kaushik\",\"doi\":\"10.5755/j01.itc.52.2.32778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the current state of medical research, the diagnosis of heart disease has become a challenging medical objective. This diagnosis is dependent on a thorough and accurate review of the detailed medical test results and medical background of the patient. With the aid of the internet of things (IoT) and the huge advancements in the field of deep learning, researchers aim to produce intelligent monitoring systems that assist physicians in both predicting and diagnosing disorders. In this context, this work proposes a novel prediction model based on deep learning and Internet-of-Medical-Things for the efficient and real-time diagnosis of heart disease. In this work, data from the Cleveland dataset is used for training the proposed model and further the data that is gathered from the sensors in the IoMT environment is used for testing the prediction capability of the model. Chaotic Harris Hawk optimization algorithm is employed for the feature extraction from the data and these extracted features are further passed on to the classification stage where Enhanced Convolutional Neural Networks are utilized to classify whether the patient is affected by heart disease or not. In order to evaluate the performance of the proposed model, it is compared with the Machine learning models such as Support Vector Machine with Ant Colony Optimization(SVM-ACO), Random Forest with Particle Swarm Optimization(RF-PSO), Naive Bayes with Harris Hawk Optimization(NB-HHO), K Nearest Neighbor with Spiral Optimization(KNN-SPO). Also, the proposed model is compared against deep learning architectures such as VGG-16, ResNet, AlexNet,ZFNet. Further, the proposed model also outperforms two existing works taken from the literature, Faster R-CNN-ALO, and MDCNN-AEHO, with a higher accuracy of 99.2%.\",\"PeriodicalId\":54982,\"journal\":{\"name\":\"Information Technology and Control\",\"volume\":\"239 2 1\",\"pages\":\"500-514\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Technology and Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.5755/j01.itc.52.2.32778\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Technology and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5755/j01.itc.52.2.32778","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在目前的医学研究状况下,心脏病的诊断已成为一个具有挑战性的医学目标。这种诊断依赖于对详细的医学检查结果和患者的医学背景进行彻底和准确的审查。借助物联网(IoT)和深度学习领域的巨大进步,研究人员的目标是生产智能监测系统,帮助医生预测和诊断疾病。在此背景下,本工作提出了一种基于深度学习和医疗物联网的新型预测模型,用于心脏病的高效实时诊断。在这项工作中,来自克利夫兰数据集的数据用于训练所提出的模型,并且从IoMT环境中的传感器收集的数据用于测试模型的预测能力。采用混沌Harris Hawk优化算法对数据进行特征提取,提取出的特征再进入分类阶段,利用增强卷积神经网络对患者是否患有心脏病进行分类。为了评价该模型的性能,将其与支持向量机与蚁群优化(SVM-ACO)、随机森林与粒子群优化(RF-PSO)、朴素贝叶斯与哈里斯鹰优化(NB-HHO)、K近邻与螺旋优化(KNN-SPO)等机器学习模型进行了比较。此外,将所提出的模型与VGG-16、ResNet、AlexNet、ZFNet等深度学习架构进行了比较。此外,本文提出的模型也优于文献中已有的两个模型,Faster R-CNN-ALO和MDCNN-AEHO,准确率达到99.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heart Diseases Diagnosis Using Chaotic Harris Hawk Optimization with E-CNN for IoMT Framework
In the current state of medical research, the diagnosis of heart disease has become a challenging medical objective. This diagnosis is dependent on a thorough and accurate review of the detailed medical test results and medical background of the patient. With the aid of the internet of things (IoT) and the huge advancements in the field of deep learning, researchers aim to produce intelligent monitoring systems that assist physicians in both predicting and diagnosing disorders. In this context, this work proposes a novel prediction model based on deep learning and Internet-of-Medical-Things for the efficient and real-time diagnosis of heart disease. In this work, data from the Cleveland dataset is used for training the proposed model and further the data that is gathered from the sensors in the IoMT environment is used for testing the prediction capability of the model. Chaotic Harris Hawk optimization algorithm is employed for the feature extraction from the data and these extracted features are further passed on to the classification stage where Enhanced Convolutional Neural Networks are utilized to classify whether the patient is affected by heart disease or not. In order to evaluate the performance of the proposed model, it is compared with the Machine learning models such as Support Vector Machine with Ant Colony Optimization(SVM-ACO), Random Forest with Particle Swarm Optimization(RF-PSO), Naive Bayes with Harris Hawk Optimization(NB-HHO), K Nearest Neighbor with Spiral Optimization(KNN-SPO). Also, the proposed model is compared against deep learning architectures such as VGG-16, ResNet, AlexNet,ZFNet. Further, the proposed model also outperforms two existing works taken from the literature, Faster R-CNN-ALO, and MDCNN-AEHO, with a higher accuracy of 99.2%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Technology and Control
Information Technology and Control 工程技术-计算机:人工智能
CiteScore
2.70
自引率
9.10%
发文量
36
审稿时长
12 months
期刊介绍: Periodical journal covers a wide field of computer science and control systems related problems including: -Software and hardware engineering; -Management systems engineering; -Information systems and databases; -Embedded systems; -Physical systems modelling and application; -Computer networks and cloud computing; -Data visualization; -Human-computer interface; -Computer graphics, visual analytics, and multimedia systems.
期刊最新文献
Model construction of big data asset management system for digital power grid regulation Melanoma Diagnosis Using Enhanced Faster Region Convolutional Neural Networks Optimized by Artificial Gorilla Troops Algorithm A Scalable and Stacked Ensemble Approach to Improve Intrusion Detection in Clouds Traffic Sign Detection Algorithm Based on Improved Yolox Apply Physical System Model and Computer Algorithm to Identify Osmanthus Fragrans Seed Vigor Based on Hyperspectral Imaging and Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1