K. Syamantak, Navneet Cv, G. Prashant, J. Sanjhal, G. Souvik, C. K. Nandi
{"title":"机制洞察碳点:质子化诱导的光致发光","authors":"K. Syamantak, Navneet Cv, G. Prashant, J. Sanjhal, G. Souvik, C. K. Nandi","doi":"10.4172/2169-0022.1000448","DOIUrl":null,"url":null,"abstract":"Although several theories have been proposed, the mechanism of complex photoluminescence in carbon dots (CNDs) is a central quest till date. This report presents pH dependent steady state and time resolved spectroscopy study which identifies a possible origin of the complex photoluminescence in CNDs. The multiple emissive species created by the excited state protonation-deprotonation reaction at certain pH gives rise to inhomogeneous broadening and consequently excitation dependent multicolour emission. The origin of the excited state dynamics is attributed to the significant change of the proton dissociation between ground and excited state. We present a new model on protonation dynamics and show how it affects the emissive states in CNDs.","PeriodicalId":16326,"journal":{"name":"Journal of Material Sciences & Engineering","volume":"65 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Mechanistic Insight into the Carbon Dots: Protonation induced Photoluminescence\",\"authors\":\"K. Syamantak, Navneet Cv, G. Prashant, J. Sanjhal, G. Souvik, C. K. Nandi\",\"doi\":\"10.4172/2169-0022.1000448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although several theories have been proposed, the mechanism of complex photoluminescence in carbon dots (CNDs) is a central quest till date. This report presents pH dependent steady state and time resolved spectroscopy study which identifies a possible origin of the complex photoluminescence in CNDs. The multiple emissive species created by the excited state protonation-deprotonation reaction at certain pH gives rise to inhomogeneous broadening and consequently excitation dependent multicolour emission. The origin of the excited state dynamics is attributed to the significant change of the proton dissociation between ground and excited state. We present a new model on protonation dynamics and show how it affects the emissive states in CNDs.\",\"PeriodicalId\":16326,\"journal\":{\"name\":\"Journal of Material Sciences & Engineering\",\"volume\":\"65 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Material Sciences & Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2169-0022.1000448\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Material Sciences & Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2169-0022.1000448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mechanistic Insight into the Carbon Dots: Protonation induced Photoluminescence
Although several theories have been proposed, the mechanism of complex photoluminescence in carbon dots (CNDs) is a central quest till date. This report presents pH dependent steady state and time resolved spectroscopy study which identifies a possible origin of the complex photoluminescence in CNDs. The multiple emissive species created by the excited state protonation-deprotonation reaction at certain pH gives rise to inhomogeneous broadening and consequently excitation dependent multicolour emission. The origin of the excited state dynamics is attributed to the significant change of the proton dissociation between ground and excited state. We present a new model on protonation dynamics and show how it affects the emissive states in CNDs.