基于支持向量机的多类微阵列分类的广义输出编码方案

Li Shen, E.C. Tan
{"title":"基于支持向量机的多类微阵列分类的广义输出编码方案","authors":"Li Shen, E.C. Tan","doi":"10.1142/9781860947292_0021","DOIUrl":null,"url":null,"abstract":"Multiclass cancer classification based on microarray data is described. A generalized output-coding scheme combined with binary classifiers is used. Different coding strategies, decoding functions and feature selection methods are combined and validated on two cancer datasets: GCM and ALL. The effects of these different methods and their combinations are then discussed. The highest testing accuracies achieved are 78% and 100% for the two datasets respectively. The results are considered to be very good when compared with the other researchers’ work.","PeriodicalId":74513,"journal":{"name":"Proceedings of the ... Asia-Pacific bioinformatics conference","volume":"205 1","pages":"179-186"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Generalized Output-Coding Scheme with SVM for Multiclass Microarray Classification\",\"authors\":\"Li Shen, E.C. Tan\",\"doi\":\"10.1142/9781860947292_0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiclass cancer classification based on microarray data is described. A generalized output-coding scheme combined with binary classifiers is used. Different coding strategies, decoding functions and feature selection methods are combined and validated on two cancer datasets: GCM and ALL. The effects of these different methods and their combinations are then discussed. The highest testing accuracies achieved are 78% and 100% for the two datasets respectively. The results are considered to be very good when compared with the other researchers’ work.\",\"PeriodicalId\":74513,\"journal\":{\"name\":\"Proceedings of the ... Asia-Pacific bioinformatics conference\",\"volume\":\"205 1\",\"pages\":\"179-186\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... Asia-Pacific bioinformatics conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9781860947292_0021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Asia-Pacific bioinformatics conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781860947292_0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

描述了基于微阵列数据的多类别癌症分类。采用了一种结合二值分类器的广义输出编码方案。将不同的编码策略、解码函数和特征选择方法结合在GCM和ALL两个肿瘤数据集上进行验证。然后讨论了这些不同方法及其组合的效果。两个数据集的最高测试精度分别为78%和100%。与其他研究人员的工作相比,这些结果被认为是非常好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Generalized Output-Coding Scheme with SVM for Multiclass Microarray Classification
Multiclass cancer classification based on microarray data is described. A generalized output-coding scheme combined with binary classifiers is used. Different coding strategies, decoding functions and feature selection methods are combined and validated on two cancer datasets: GCM and ALL. The effects of these different methods and their combinations are then discussed. The highest testing accuracies achieved are 78% and 100% for the two datasets respectively. The results are considered to be very good when compared with the other researchers’ work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tuning Privacy-Utility Tradeoff in Genomic Studies Using Selective SNP Hiding. The Future of Bioinformatics CHEMICAL COMPOUND CLASSIFICATION WITH AUTOMATICALLY MINED STRUCTURE PATTERNS. Predicting Nucleolar Proteins Using Support-Vector Machines Proceedings of the 6th Asia-Pacific Bioinformatics Conference, APBC 2008, 14-17 January 2008, Kyoto, Japan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1