Wei Liang, Zichen Wang, Zhaodong Yang, Tong Wang, He Gu
{"title":"液滴驱动中兰姆波衰减的研究","authors":"Wei Liang, Zichen Wang, Zhaodong Yang, Tong Wang, He Gu","doi":"10.1007/s12217-023-10071-y","DOIUrl":null,"url":null,"abstract":"<div><p>In droplet actuation, Lamb waves are utilized to manipulate and control liquid droplets on solid surfaces. This paper presents an analytical model for driving droplets using Lamb waves (a type of surface acoustic wave) on a non-piezoelectric substrate. The driving of droplets is simulated using the level set two-phase flow method, and the obtained data are validated through corresponding experiments. The simulation and experimental data are therefore combined to calculate and verify the attenuation of Lamb waves in droplet actuation. The research findings indicate that the droplets absorb the maximum amount of Lamb wave energy when their volume is 50 µL, and at this point, the Lamb wave experiences the fastest attenuation.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigations on Attenuation of Lamb Waves in Droplet Actuation\",\"authors\":\"Wei Liang, Zichen Wang, Zhaodong Yang, Tong Wang, He Gu\",\"doi\":\"10.1007/s12217-023-10071-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In droplet actuation, Lamb waves are utilized to manipulate and control liquid droplets on solid surfaces. This paper presents an analytical model for driving droplets using Lamb waves (a type of surface acoustic wave) on a non-piezoelectric substrate. The driving of droplets is simulated using the level set two-phase flow method, and the obtained data are validated through corresponding experiments. The simulation and experimental data are therefore combined to calculate and verify the attenuation of Lamb waves in droplet actuation. The research findings indicate that the droplets absorb the maximum amount of Lamb wave energy when their volume is 50 µL, and at this point, the Lamb wave experiences the fastest attenuation.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12217-023-10071-y\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-023-10071-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigations on Attenuation of Lamb Waves in Droplet Actuation
In droplet actuation, Lamb waves are utilized to manipulate and control liquid droplets on solid surfaces. This paper presents an analytical model for driving droplets using Lamb waves (a type of surface acoustic wave) on a non-piezoelectric substrate. The driving of droplets is simulated using the level set two-phase flow method, and the obtained data are validated through corresponding experiments. The simulation and experimental data are therefore combined to calculate and verify the attenuation of Lamb waves in droplet actuation. The research findings indicate that the droplets absorb the maximum amount of Lamb wave energy when their volume is 50 µL, and at this point, the Lamb wave experiences the fastest attenuation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.