多芯片DDR微系统封装建模与计算分析方法

Bo Wen;Guoyao Xiao;Zongzheng Sun;Guisheng Liao;Fei Xie;Yinghui Quan
{"title":"多芯片DDR微系统封装建模与计算分析方法","authors":"Bo Wen;Guoyao Xiao;Zongzheng Sun;Guisheng Liao;Fei Xie;Yinghui Quan","doi":"10.1109/JMASS.2023.3293861","DOIUrl":null,"url":null,"abstract":"The miniaturization of memory systems is of great significance to the miniaturization of aerospace electronic systems, and double data rate (DDR) memory is prone to serious signal integrity (SI) problems due to its high-frequency and high-speed characteristics. Eye simulation analysis is often time-consuming and does not provide insightful guidance for link optimization and requires further circuit modeling and mathematical analysis. Based on a multichip DDR microsystem design, this article proposes a circuit model of links under different topologies by taking a representative multilevel bonding interconnection structure as an example and establishes a mathematical model of DDR received signal through theoretical calculation. At the same time, we summarize the quantitative relationship between the bonding wire parameters and the related SI problems by substituting the actual circuit parameters into the mathematical model formula. Finally, the theoretical analysis results and simulation results are compared and verified through circuit simulation, and the error is analyzed. The results show that the circuit model and theoretical analysis method can quantitatively analyze the SI problem from a mathematical perspective within a certain error range, and the method and conclusion can be used to guide the early design and later optimization of the DDR memory microsystem.","PeriodicalId":100624,"journal":{"name":"IEEE Journal on Miniaturization for Air and Space Systems","volume":"4 4","pages":"336-344"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Modeling and Computational Analysis Method for Multichip DDR Microsystem\",\"authors\":\"Bo Wen;Guoyao Xiao;Zongzheng Sun;Guisheng Liao;Fei Xie;Yinghui Quan\",\"doi\":\"10.1109/JMASS.2023.3293861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The miniaturization of memory systems is of great significance to the miniaturization of aerospace electronic systems, and double data rate (DDR) memory is prone to serious signal integrity (SI) problems due to its high-frequency and high-speed characteristics. Eye simulation analysis is often time-consuming and does not provide insightful guidance for link optimization and requires further circuit modeling and mathematical analysis. Based on a multichip DDR microsystem design, this article proposes a circuit model of links under different topologies by taking a representative multilevel bonding interconnection structure as an example and establishes a mathematical model of DDR received signal through theoretical calculation. At the same time, we summarize the quantitative relationship between the bonding wire parameters and the related SI problems by substituting the actual circuit parameters into the mathematical model formula. Finally, the theoretical analysis results and simulation results are compared and verified through circuit simulation, and the error is analyzed. The results show that the circuit model and theoretical analysis method can quantitatively analyze the SI problem from a mathematical perspective within a certain error range, and the method and conclusion can be used to guide the early design and later optimization of the DDR memory microsystem.\",\"PeriodicalId\":100624,\"journal\":{\"name\":\"IEEE Journal on Miniaturization for Air and Space Systems\",\"volume\":\"4 4\",\"pages\":\"336-344\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Miniaturization for Air and Space Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10178048/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Miniaturization for Air and Space Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10178048/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

存储系统的小型化对航空航天电子系统的小型化具有重要意义,双数据速率(DDR)存储器由于其高频、高速的特性,容易出现严重的信号完整性问题。眼动仿真分析往往耗时,不能为链路优化提供有见地的指导,需要进一步的电路建模和数学分析。本文以多芯片DDR微系统设计为基础,以具有代表性的多层键合互连结构为例,提出了不同拓扑下链路的电路模型,并通过理论计算建立了DDR接收信号的数学模型。同时,将实际电路参数代入数学模型公式,总结了键合线参数与相关SI问题之间的定量关系。最后,通过电路仿真对理论分析结果与仿真结果进行了对比验证,并对误差进行了分析。结果表明,电路模型和理论分析方法可以在一定误差范围内从数学角度定量分析SI问题,该方法和结论可用于指导DDR存储微系统的前期设计和后期优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Modeling and Computational Analysis Method for Multichip DDR Microsystem
The miniaturization of memory systems is of great significance to the miniaturization of aerospace electronic systems, and double data rate (DDR) memory is prone to serious signal integrity (SI) problems due to its high-frequency and high-speed characteristics. Eye simulation analysis is often time-consuming and does not provide insightful guidance for link optimization and requires further circuit modeling and mathematical analysis. Based on a multichip DDR microsystem design, this article proposes a circuit model of links under different topologies by taking a representative multilevel bonding interconnection structure as an example and establishes a mathematical model of DDR received signal through theoretical calculation. At the same time, we summarize the quantitative relationship between the bonding wire parameters and the related SI problems by substituting the actual circuit parameters into the mathematical model formula. Finally, the theoretical analysis results and simulation results are compared and verified through circuit simulation, and the error is analyzed. The results show that the circuit model and theoretical analysis method can quantitatively analyze the SI problem from a mathematical perspective within a certain error range, and the method and conclusion can be used to guide the early design and later optimization of the DDR memory microsystem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
期刊最新文献
2024 Index IEEE Journal on Miniaturization for Air and Space Systems Vol. 5 Table of Contents Front Cover The Journal of Miniaturized Air and Space Systems Broadband Miniaturized Antenna Based on Enhanced Magnetic Field Convergence in UAV
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1