因果关联规则挖掘的系统文献综述

Shkurte Luma-Osmani, F. Ismaili, Xhemal Zenuni, Bujar Raufi
{"title":"因果关联规则挖掘的系统文献综述","authors":"Shkurte Luma-Osmani, F. Ismaili, Xhemal Zenuni, Bujar Raufi","doi":"10.1109/IEMCON51383.2020.9284908","DOIUrl":null,"url":null,"abstract":"As quoted recently, this is the age of information, and for information we need data. Data is everywhere around us and it is expanding dramatically. The aim of this research is to inspect and summarize the state-of-the-art approaches and studies of machine learning methods to causal inference techniques. This review utilizes a systematic literature research to the mostly prominent digital database libraries in the field of computer sciences in recent years. The objective is to identify and investigate three raised research questions to broadly analyze and detailly explore several points of view concerning causal association rules and their application in real-world problems.","PeriodicalId":6871,"journal":{"name":"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","volume":"9 1","pages":"0048-0054"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Systematic Literature Review in Causal Association Rules Mining\",\"authors\":\"Shkurte Luma-Osmani, F. Ismaili, Xhemal Zenuni, Bujar Raufi\",\"doi\":\"10.1109/IEMCON51383.2020.9284908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As quoted recently, this is the age of information, and for information we need data. Data is everywhere around us and it is expanding dramatically. The aim of this research is to inspect and summarize the state-of-the-art approaches and studies of machine learning methods to causal inference techniques. This review utilizes a systematic literature research to the mostly prominent digital database libraries in the field of computer sciences in recent years. The objective is to identify and investigate three raised research questions to broadly analyze and detailly explore several points of view concerning causal association rules and their application in real-world problems.\",\"PeriodicalId\":6871,\"journal\":{\"name\":\"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)\",\"volume\":\"9 1\",\"pages\":\"0048-0054\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMCON51383.2020.9284908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMCON51383.2020.9284908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

正如最近引用的,这是一个信息时代,而为了获取信息,我们需要数据。数据无处不在,而且还在急剧增长。本研究的目的是检查和总结机器学习方法对因果推理技术的最新方法和研究。本文对近年来计算机科学领域最突出的数字数据库图书馆进行了系统的文献研究。目的是确定和调查提出的三个研究问题,以广泛分析和详细探索有关因果关联规则及其在现实世界问题中的应用的几个观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Systematic Literature Review in Causal Association Rules Mining
As quoted recently, this is the age of information, and for information we need data. Data is everywhere around us and it is expanding dramatically. The aim of this research is to inspect and summarize the state-of-the-art approaches and studies of machine learning methods to causal inference techniques. This review utilizes a systematic literature research to the mostly prominent digital database libraries in the field of computer sciences in recent years. The objective is to identify and investigate three raised research questions to broadly analyze and detailly explore several points of view concerning causal association rules and their application in real-world problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Financial Time Series Stock Price Prediction using Deep Learning Development of a Low-cost LoRa based SCADA system for Monitoring and Supervisory Control of Small Renewable Energy Generation Systems A Systematic Literature Review in Causal Association Rules Mining Distance-Based Anomaly Detection for Industrial Surfaces Using Triplet Networks Analysis of Requirements for Autonomous Driving Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1