高速列车上的积雪和结冰模拟框架

F. Zhao, Dawei Chen, Jiali Liu, Weibin Wang, M. Vahdati
{"title":"高速列车上的积雪和结冰模拟框架","authors":"F. Zhao, Dawei Chen, Jiali Liu, Weibin Wang, M. Vahdati","doi":"10.1177/09544097231190242","DOIUrl":null,"url":null,"abstract":"A simulation framework for three-dimensional particle trajectory tracking, snow accumulation and ice accretion modelling on solid bodies in high-speed air flow is presented. The framework, named HADICE, solves the aerodynamic flow field as Reynolds averaged Navier-Stokes (RANS), with optional hybrid RANS/LES capabilities for modelling complex turbulent flows. Particle trajectory tracking is performed in an Eulerian-Lagrangian approach and wall collision is modelled using a hard collision model with reflect condition and a momentum based trap condition. A novel accurate and robust iterative evaluation method for the local collection efficiency is proposed for arbitrary 3D geometry and flow. Ice accretion is modelled in a multi-step approach and iced geometry is updated through mesh deformation using a radial basis function (RBF) interpolation method. Snow accumulation and ice accretion predictions based on the framework are validated against climatic wind tunnel experimental measurements. A full 3D simulation is demonstrated for snow accumulation and ice accretion on a 1:8 scaled high-speed train model. Using the presented framework, snow accumulation and icing simulation for high-speed trains can be conducted in an accurate and efficient manner, which is of great importance for physical investigations and the design of anti-snow and ice protection systems.","PeriodicalId":54567,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit","volume":"24 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A framework for simulating snow accumulation and ice accretion on high-speed trains\",\"authors\":\"F. Zhao, Dawei Chen, Jiali Liu, Weibin Wang, M. Vahdati\",\"doi\":\"10.1177/09544097231190242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simulation framework for three-dimensional particle trajectory tracking, snow accumulation and ice accretion modelling on solid bodies in high-speed air flow is presented. The framework, named HADICE, solves the aerodynamic flow field as Reynolds averaged Navier-Stokes (RANS), with optional hybrid RANS/LES capabilities for modelling complex turbulent flows. Particle trajectory tracking is performed in an Eulerian-Lagrangian approach and wall collision is modelled using a hard collision model with reflect condition and a momentum based trap condition. A novel accurate and robust iterative evaluation method for the local collection efficiency is proposed for arbitrary 3D geometry and flow. Ice accretion is modelled in a multi-step approach and iced geometry is updated through mesh deformation using a radial basis function (RBF) interpolation method. Snow accumulation and ice accretion predictions based on the framework are validated against climatic wind tunnel experimental measurements. A full 3D simulation is demonstrated for snow accumulation and ice accretion on a 1:8 scaled high-speed train model. Using the presented framework, snow accumulation and icing simulation for high-speed trains can be conducted in an accurate and efficient manner, which is of great importance for physical investigations and the design of anti-snow and ice protection systems.\",\"PeriodicalId\":54567,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544097231190242\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544097231190242","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种用于高速气流中固体三维粒子轨迹跟踪、积雪和结冰建模的仿真框架。这个名为haice的框架将气动流场求解为Reynolds平均Navier-Stokes (RANS),并可选择混合RANS/LES功能来模拟复杂的湍流。粒子轨迹跟踪采用欧拉-拉格朗日方法,壁面碰撞采用带有反射条件和基于动量的陷阱条件的硬碰撞模型。针对任意三维几何形状和流场,提出了一种精确、鲁棒的局部采集效率迭代评价方法。利用径向基函数(RBF)插值方法,通过网格变形对冰的几何形状进行更新。根据气候风洞实验测量结果验证了基于该框架的积雪和冰的累积预测。在1:8比例的高速列车模型上,对积雪和结冰过程进行了全三维模拟。利用该框架可以准确、高效地进行高速列车的积雪结冰模拟,对物理调查和防冰雪防护系统的设计具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A framework for simulating snow accumulation and ice accretion on high-speed trains
A simulation framework for three-dimensional particle trajectory tracking, snow accumulation and ice accretion modelling on solid bodies in high-speed air flow is presented. The framework, named HADICE, solves the aerodynamic flow field as Reynolds averaged Navier-Stokes (RANS), with optional hybrid RANS/LES capabilities for modelling complex turbulent flows. Particle trajectory tracking is performed in an Eulerian-Lagrangian approach and wall collision is modelled using a hard collision model with reflect condition and a momentum based trap condition. A novel accurate and robust iterative evaluation method for the local collection efficiency is proposed for arbitrary 3D geometry and flow. Ice accretion is modelled in a multi-step approach and iced geometry is updated through mesh deformation using a radial basis function (RBF) interpolation method. Snow accumulation and ice accretion predictions based on the framework are validated against climatic wind tunnel experimental measurements. A full 3D simulation is demonstrated for snow accumulation and ice accretion on a 1:8 scaled high-speed train model. Using the presented framework, snow accumulation and icing simulation for high-speed trains can be conducted in an accurate and efficient manner, which is of great importance for physical investigations and the design of anti-snow and ice protection systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
10.00%
发文量
91
审稿时长
7 months
期刊介绍: The Journal of Rail and Rapid Transit is devoted to engineering in its widest interpretation applicable to rail and rapid transit. The Journal aims to promote sharing of technical knowledge, ideas and experience between engineers and researchers working in the railway field.
期刊最新文献
The influence of semi-actively controlled magnetorheological bogie yaw dampers on the guiding behaviour of a railway vehicle in an S-curve: Simulation and on-track test Mechanism and improvement for tail vehicle swaying of power-centralized EMUs Long railway track modelling – A parallel computing approach Research on ultrasonic guided wave-based high-speed turnout switch rail base flaw detection Ballast stiffness estimation based on measurements during dynamic track stabilization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1