F. Zhao, Dawei Chen, Jiali Liu, Weibin Wang, M. Vahdati
{"title":"高速列车上的积雪和结冰模拟框架","authors":"F. Zhao, Dawei Chen, Jiali Liu, Weibin Wang, M. Vahdati","doi":"10.1177/09544097231190242","DOIUrl":null,"url":null,"abstract":"A simulation framework for three-dimensional particle trajectory tracking, snow accumulation and ice accretion modelling on solid bodies in high-speed air flow is presented. The framework, named HADICE, solves the aerodynamic flow field as Reynolds averaged Navier-Stokes (RANS), with optional hybrid RANS/LES capabilities for modelling complex turbulent flows. Particle trajectory tracking is performed in an Eulerian-Lagrangian approach and wall collision is modelled using a hard collision model with reflect condition and a momentum based trap condition. A novel accurate and robust iterative evaluation method for the local collection efficiency is proposed for arbitrary 3D geometry and flow. Ice accretion is modelled in a multi-step approach and iced geometry is updated through mesh deformation using a radial basis function (RBF) interpolation method. Snow accumulation and ice accretion predictions based on the framework are validated against climatic wind tunnel experimental measurements. A full 3D simulation is demonstrated for snow accumulation and ice accretion on a 1:8 scaled high-speed train model. Using the presented framework, snow accumulation and icing simulation for high-speed trains can be conducted in an accurate and efficient manner, which is of great importance for physical investigations and the design of anti-snow and ice protection systems.","PeriodicalId":54567,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit","volume":"24 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A framework for simulating snow accumulation and ice accretion on high-speed trains\",\"authors\":\"F. Zhao, Dawei Chen, Jiali Liu, Weibin Wang, M. Vahdati\",\"doi\":\"10.1177/09544097231190242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simulation framework for three-dimensional particle trajectory tracking, snow accumulation and ice accretion modelling on solid bodies in high-speed air flow is presented. The framework, named HADICE, solves the aerodynamic flow field as Reynolds averaged Navier-Stokes (RANS), with optional hybrid RANS/LES capabilities for modelling complex turbulent flows. Particle trajectory tracking is performed in an Eulerian-Lagrangian approach and wall collision is modelled using a hard collision model with reflect condition and a momentum based trap condition. A novel accurate and robust iterative evaluation method for the local collection efficiency is proposed for arbitrary 3D geometry and flow. Ice accretion is modelled in a multi-step approach and iced geometry is updated through mesh deformation using a radial basis function (RBF) interpolation method. Snow accumulation and ice accretion predictions based on the framework are validated against climatic wind tunnel experimental measurements. A full 3D simulation is demonstrated for snow accumulation and ice accretion on a 1:8 scaled high-speed train model. Using the presented framework, snow accumulation and icing simulation for high-speed trains can be conducted in an accurate and efficient manner, which is of great importance for physical investigations and the design of anti-snow and ice protection systems.\",\"PeriodicalId\":54567,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544097231190242\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544097231190242","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
A framework for simulating snow accumulation and ice accretion on high-speed trains
A simulation framework for three-dimensional particle trajectory tracking, snow accumulation and ice accretion modelling on solid bodies in high-speed air flow is presented. The framework, named HADICE, solves the aerodynamic flow field as Reynolds averaged Navier-Stokes (RANS), with optional hybrid RANS/LES capabilities for modelling complex turbulent flows. Particle trajectory tracking is performed in an Eulerian-Lagrangian approach and wall collision is modelled using a hard collision model with reflect condition and a momentum based trap condition. A novel accurate and robust iterative evaluation method for the local collection efficiency is proposed for arbitrary 3D geometry and flow. Ice accretion is modelled in a multi-step approach and iced geometry is updated through mesh deformation using a radial basis function (RBF) interpolation method. Snow accumulation and ice accretion predictions based on the framework are validated against climatic wind tunnel experimental measurements. A full 3D simulation is demonstrated for snow accumulation and ice accretion on a 1:8 scaled high-speed train model. Using the presented framework, snow accumulation and icing simulation for high-speed trains can be conducted in an accurate and efficient manner, which is of great importance for physical investigations and the design of anti-snow and ice protection systems.
期刊介绍:
The Journal of Rail and Rapid Transit is devoted to engineering in its widest interpretation applicable to rail and rapid transit. The Journal aims to promote sharing of technical knowledge, ideas and experience between engineers and researchers working in the railway field.