邻交电网扰动下vdc - hvdc系统动态分析

R. Tiwari, Rahul Kumar, O. Gupta, V. Sood
{"title":"邻交电网扰动下vdc - hvdc系统动态分析","authors":"R. Tiwari, Rahul Kumar, O. Gupta, V. Sood","doi":"10.13052/dgaej2156-3306.3853","DOIUrl":null,"url":null,"abstract":"VSC-HVDC systems are widely used to integrate wind farms, asynchronous generations and networks operating at different frequencies. The Multi-terminal (MT) and multi-fed (MF) HVDC’s are the system mainly constituted of VSC’s, to integrate renewable sources and transmitting bulk power to conventional AC grids. A sudden change in the steady state even in adjacent networks may create severe disturbances in the operation of such HVDC systems. The disturbances in AC or DC networks directly influence the performance of systems, particularly in MT-HVDC and MF-HVDC systems. However, the HVDC systems are known for their intelligent control in modulating operational states as and when required. This paper presents the dynamic analysis of MF-HVDC system due to load changes, faults and other disturbances in the adjacent AC networks. The result indicates that VSC-HVDC provides decoupled control of active and reactive power with capability in adjusting operational mode during various minor and major disturbances. Based on the results obtained, the paper proposed a novel sensitivity factor indicating percentage coupling among various line parameters during disturbances. Furthermore, the VSC’s injects harmonic signals on both AC and DC sides of HVDC system. These harmonics voltage or currents signals may get amplified to a dangerously high magnitude at resonance frequencies. Thus, the frequency characteristics of different subsystems are also analyzed using FFT. A ±100 kV, 200 MW bipolar MF VSC-HVDC test systems is used to simulated the results in MATLAB/Simulink software.","PeriodicalId":11205,"journal":{"name":"Distributed Generation & Alternative Energy Journal","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Analysis of VSC-HVDC System with Disturbances in the Adjacent AC Networks\",\"authors\":\"R. Tiwari, Rahul Kumar, O. Gupta, V. Sood\",\"doi\":\"10.13052/dgaej2156-3306.3853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"VSC-HVDC systems are widely used to integrate wind farms, asynchronous generations and networks operating at different frequencies. The Multi-terminal (MT) and multi-fed (MF) HVDC’s are the system mainly constituted of VSC’s, to integrate renewable sources and transmitting bulk power to conventional AC grids. A sudden change in the steady state even in adjacent networks may create severe disturbances in the operation of such HVDC systems. The disturbances in AC or DC networks directly influence the performance of systems, particularly in MT-HVDC and MF-HVDC systems. However, the HVDC systems are known for their intelligent control in modulating operational states as and when required. This paper presents the dynamic analysis of MF-HVDC system due to load changes, faults and other disturbances in the adjacent AC networks. The result indicates that VSC-HVDC provides decoupled control of active and reactive power with capability in adjusting operational mode during various minor and major disturbances. Based on the results obtained, the paper proposed a novel sensitivity factor indicating percentage coupling among various line parameters during disturbances. Furthermore, the VSC’s injects harmonic signals on both AC and DC sides of HVDC system. These harmonics voltage or currents signals may get amplified to a dangerously high magnitude at resonance frequencies. Thus, the frequency characteristics of different subsystems are also analyzed using FFT. A ±100 kV, 200 MW bipolar MF VSC-HVDC test systems is used to simulated the results in MATLAB/Simulink software.\",\"PeriodicalId\":11205,\"journal\":{\"name\":\"Distributed Generation & Alternative Energy Journal\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Distributed Generation & Alternative Energy Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/dgaej2156-3306.3853\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Distributed Generation & Alternative Energy Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/dgaej2156-3306.3853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

VSC-HVDC系统被广泛用于整合风电场、异步发电和不同频率运行的网络。多端多馈高压直流输电系统是由多端多馈直流输电系统构成的集成可再生能源并向传统交流电网输送大容量电力的系统。即使在相邻的电网中,稳态的突然变化也可能对这种高压直流系统的运行造成严重的干扰。交流或直流网络中的扰动直接影响系统的性能,特别是在MT-HVDC和MF-HVDC系统中。然而,高压直流系统以其在需要时调节运行状态的智能控制而闻名。本文介绍了中频-高压直流系统在负荷变化、故障和相邻交流网络干扰下的动态分析。结果表明,该系统具有有功和无功的解耦控制能力,并具有在各种大小扰动下调节运行模式的能力。在此基础上,本文提出了一种新的灵敏度因子,用于表示扰动时各线路参数之间耦合的百分比。此外,VSC在高压直流系统的交流侧和直流侧都注入谐波信号。这些谐波电压或电流信号可能在共振频率上被放大到危险的高幅度。因此,利用FFT分析了不同子系统的频率特性。采用±100 kV、200 MW双极性中频直流直流试验系统,在MATLAB/Simulink软件中对试验结果进行仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic Analysis of VSC-HVDC System with Disturbances in the Adjacent AC Networks
VSC-HVDC systems are widely used to integrate wind farms, asynchronous generations and networks operating at different frequencies. The Multi-terminal (MT) and multi-fed (MF) HVDC’s are the system mainly constituted of VSC’s, to integrate renewable sources and transmitting bulk power to conventional AC grids. A sudden change in the steady state even in adjacent networks may create severe disturbances in the operation of such HVDC systems. The disturbances in AC or DC networks directly influence the performance of systems, particularly in MT-HVDC and MF-HVDC systems. However, the HVDC systems are known for their intelligent control in modulating operational states as and when required. This paper presents the dynamic analysis of MF-HVDC system due to load changes, faults and other disturbances in the adjacent AC networks. The result indicates that VSC-HVDC provides decoupled control of active and reactive power with capability in adjusting operational mode during various minor and major disturbances. Based on the results obtained, the paper proposed a novel sensitivity factor indicating percentage coupling among various line parameters during disturbances. Furthermore, the VSC’s injects harmonic signals on both AC and DC sides of HVDC system. These harmonics voltage or currents signals may get amplified to a dangerously high magnitude at resonance frequencies. Thus, the frequency characteristics of different subsystems are also analyzed using FFT. A ±100 kV, 200 MW bipolar MF VSC-HVDC test systems is used to simulated the results in MATLAB/Simulink software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Power Grid User Behavior Based on Data Mining Algorithms – System Design and Implementation Load Frequency Control Strategy of Interconnected Power System Based on Tube DMPC KWH Cost Analysis of Energy Storage Power Station Based on Changing Trend of Battery Cost Study on PV Power Prediction Based on VMD-IGWO-LSTM Research on Environmental Performance and Measurement of Smart City Power Supply Based on Non Radial Network DEA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1