从开放资源创建数据集

I. Chugunkov, Dmitry V. Kabak, Viktor N. Vyunnikov, R. E. Aslanov
{"title":"从开放资源创建数据集","authors":"I. Chugunkov, Dmitry V. Kabak, Viktor N. Vyunnikov, R. E. Aslanov","doi":"10.1109/EICONRUS.2018.8317091","DOIUrl":null,"url":null,"abstract":"Machine learning is one of the fastest growing spheres in IT, but it still has some fundamental problems. Before training a neural network, it's necessary to collect a vast dataset of marked entries. However, manual collection of information takes a lot of time and resources. That is why one of the hardest problems to solve in deep learning is the problem of getting the right data with the proper tags. This paper aims at methods that allow to automatically create or update the marked dataset for building a car model classifier by the parser of known Internet sources, which uses a simple classifier to delete incorrect data. The main goal of this article is to prove that public sources can be used to collect the correctly selected and marked data.","PeriodicalId":6562,"journal":{"name":"2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)","volume":"148 1","pages":"295-297"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Creation of datasets from open sources\",\"authors\":\"I. Chugunkov, Dmitry V. Kabak, Viktor N. Vyunnikov, R. E. Aslanov\",\"doi\":\"10.1109/EICONRUS.2018.8317091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning is one of the fastest growing spheres in IT, but it still has some fundamental problems. Before training a neural network, it's necessary to collect a vast dataset of marked entries. However, manual collection of information takes a lot of time and resources. That is why one of the hardest problems to solve in deep learning is the problem of getting the right data with the proper tags. This paper aims at methods that allow to automatically create or update the marked dataset for building a car model classifier by the parser of known Internet sources, which uses a simple classifier to delete incorrect data. The main goal of this article is to prove that public sources can be used to collect the correctly selected and marked data.\",\"PeriodicalId\":6562,\"journal\":{\"name\":\"2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)\",\"volume\":\"148 1\",\"pages\":\"295-297\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EICONRUS.2018.8317091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EICONRUS.2018.8317091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

机器学习是IT领域发展最快的领域之一,但它仍然存在一些基本问题。在训练神经网络之前,有必要收集大量标记条目的数据集。然而,手工收集信息需要花费大量的时间和资源。这就是为什么在深度学习中最难解决的问题之一是用正确的标签获取正确的数据。本文的目标是通过解析器自动创建或更新标记的数据集来构建汽车模型分类器,该分类器使用简单的分类器删除不正确的数据。本文的主要目的是证明可以使用公共资源来收集正确选择和标记的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Creation of datasets from open sources
Machine learning is one of the fastest growing spheres in IT, but it still has some fundamental problems. Before training a neural network, it's necessary to collect a vast dataset of marked entries. However, manual collection of information takes a lot of time and resources. That is why one of the hardest problems to solve in deep learning is the problem of getting the right data with the proper tags. This paper aims at methods that allow to automatically create or update the marked dataset for building a car model classifier by the parser of known Internet sources, which uses a simple classifier to delete incorrect data. The main goal of this article is to prove that public sources can be used to collect the correctly selected and marked data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The modeling of emergency oil spills in GIS Load balancing in cloud computing Practical characterisation of the piezo electric properties of a 3K T300 carbon fibre for impact sensoring Modelling of a photovoltaic array using Analog System Lab Kit Pro board Design of optimum configuration of a hybrid power system for Abertay University campus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1