C. Palade, A. Lepadatu, I. Stavarache, A. Maraloiu, V. Teodorescu, M. Ciurea
{"title":"嵌入纳米锗的SiO2薄膜中的输运机制","authors":"C. Palade, A. Lepadatu, I. Stavarache, A. Maraloiu, V. Teodorescu, M. Ciurea","doi":"10.1109/SMICND.2012.6400689","DOIUrl":null,"url":null,"abstract":"This paper reports on the conduction mechanisms in amorphous SiO2 films with embedded Ge nanoparticles. For this, measurements of current-temperature and current-voltage were employed and correlated with the microstructure results obtained from transmission electron microscopy (TEM). TEM images reveal that our films contain big Ge nanoparticles with low density and small Ge nanoparticles with high density, the last ones being the only responsible for the electrical transport. Two transport mechanisms were found at low and high temperature respectively, namely hopping on localized states in a band near Fermi level and charge excitation to the extended states at mobility edge.","PeriodicalId":9628,"journal":{"name":"CAS 2012 (International Semiconductor Conference)","volume":"4 1","pages":"91-94"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transport mechanisms in SiO2 films with embedded Germanium nanoparticles\",\"authors\":\"C. Palade, A. Lepadatu, I. Stavarache, A. Maraloiu, V. Teodorescu, M. Ciurea\",\"doi\":\"10.1109/SMICND.2012.6400689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports on the conduction mechanisms in amorphous SiO2 films with embedded Ge nanoparticles. For this, measurements of current-temperature and current-voltage were employed and correlated with the microstructure results obtained from transmission electron microscopy (TEM). TEM images reveal that our films contain big Ge nanoparticles with low density and small Ge nanoparticles with high density, the last ones being the only responsible for the electrical transport. Two transport mechanisms were found at low and high temperature respectively, namely hopping on localized states in a band near Fermi level and charge excitation to the extended states at mobility edge.\",\"PeriodicalId\":9628,\"journal\":{\"name\":\"CAS 2012 (International Semiconductor Conference)\",\"volume\":\"4 1\",\"pages\":\"91-94\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CAS 2012 (International Semiconductor Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMICND.2012.6400689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAS 2012 (International Semiconductor Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMICND.2012.6400689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transport mechanisms in SiO2 films with embedded Germanium nanoparticles
This paper reports on the conduction mechanisms in amorphous SiO2 films with embedded Ge nanoparticles. For this, measurements of current-temperature and current-voltage were employed and correlated with the microstructure results obtained from transmission electron microscopy (TEM). TEM images reveal that our films contain big Ge nanoparticles with low density and small Ge nanoparticles with high density, the last ones being the only responsible for the electrical transport. Two transport mechanisms were found at low and high temperature respectively, namely hopping on localized states in a band near Fermi level and charge excitation to the extended states at mobility edge.