K. Froberger, M. Faucher, B. Walter, M. Lavancier, R. Peretti, J. Lampin, G. Ducournau, S. Barbieri
{"title":"基于soi的光机械太赫兹辐射热计,在室温下工作,响应时间为微秒","authors":"K. Froberger, M. Faucher, B. Walter, M. Lavancier, R. Peretti, J. Lampin, G. Ducournau, S. Barbieri","doi":"10.1109/IRMMW-THz50926.2021.9566981","DOIUrl":null,"url":null,"abstract":"We report the operation of a Terahertz (THz) detector exploiting the bi-material effect to resonantly excite a cantilever (CL) of micrometric size. The detector is fabricated on a SOI substrate and coupling to the incident THz radiation is obtained using two coupled aluminum half-dipole antennas. The induced CL deflection is readout optically with a 1.5µm laser. At 300K and 2.5THz, we obtain a peak responsivity of ~2 x 108pm/W for the fundamental bending mode. This yields a NEP of ~20nW/Hz1/2 at 2.5THz, i.e. of ~2nW/Hz1/2 at 3.8THz, corresponding to the antenna peak absorption. Finally, the low mechanical quality factor of the mode grants a broad frequency response of approximately 100kHz, i.e. a response time of ~10 μs.","PeriodicalId":6852,"journal":{"name":"2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz)","volume":"1 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SOI-based opto-mechanical Terahertz bolometer operating at room temperature with microsecond response time\",\"authors\":\"K. Froberger, M. Faucher, B. Walter, M. Lavancier, R. Peretti, J. Lampin, G. Ducournau, S. Barbieri\",\"doi\":\"10.1109/IRMMW-THz50926.2021.9566981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report the operation of a Terahertz (THz) detector exploiting the bi-material effect to resonantly excite a cantilever (CL) of micrometric size. The detector is fabricated on a SOI substrate and coupling to the incident THz radiation is obtained using two coupled aluminum half-dipole antennas. The induced CL deflection is readout optically with a 1.5µm laser. At 300K and 2.5THz, we obtain a peak responsivity of ~2 x 108pm/W for the fundamental bending mode. This yields a NEP of ~20nW/Hz1/2 at 2.5THz, i.e. of ~2nW/Hz1/2 at 3.8THz, corresponding to the antenna peak absorption. Finally, the low mechanical quality factor of the mode grants a broad frequency response of approximately 100kHz, i.e. a response time of ~10 μs.\",\"PeriodicalId\":6852,\"journal\":{\"name\":\"2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz)\",\"volume\":\"1 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRMMW-THz50926.2021.9566981\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRMMW-THz50926.2021.9566981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SOI-based opto-mechanical Terahertz bolometer operating at room temperature with microsecond response time
We report the operation of a Terahertz (THz) detector exploiting the bi-material effect to resonantly excite a cantilever (CL) of micrometric size. The detector is fabricated on a SOI substrate and coupling to the incident THz radiation is obtained using two coupled aluminum half-dipole antennas. The induced CL deflection is readout optically with a 1.5µm laser. At 300K and 2.5THz, we obtain a peak responsivity of ~2 x 108pm/W for the fundamental bending mode. This yields a NEP of ~20nW/Hz1/2 at 2.5THz, i.e. of ~2nW/Hz1/2 at 3.8THz, corresponding to the antenna peak absorption. Finally, the low mechanical quality factor of the mode grants a broad frequency response of approximately 100kHz, i.e. a response time of ~10 μs.