{"title":"分析,设计和评估高频电感,以降低制造成本,提高光伏逆变器的效率","authors":"A. Alabakhshizadeh, O. Midtgård, K. Boysen","doi":"10.1109/PVSC.2013.6745064","DOIUrl":null,"url":null,"abstract":"Photovoltaic inverters are the major functional units of the photovoltaic systems. Therefore, efficiency and cost are vitally important in the design, and operation of the PV system. Magnetic components are the bulkiest component and highly affect the efficiency of the galvanically isolated PV inverter and design of such component generally involves a compromise between the reduction of core loss at the expense of increased winding loss or vice versa. The loss characteristics of the magnetic material itself present a fundamental limitation on core loss reduction, implying that the intrinsic reduction of core loss density depends on magnetic material improvements. Hence, the essential tradeoff between cost, performance and physical size must be done by designers to make the most optimal inductor for their design. A high frequency magnetic powder core inductor used in galvanically isolated PV inverter is analyzed with commercially available finite element analysis software, Maxwell - Ansoft. Results obtained from simulation studies are compared with built prototype show good agreement.","PeriodicalId":6350,"journal":{"name":"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)","volume":"13 1","pages":"2845-2848"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analysis, design, and evaluation of a high frequency inductor to reduce manufacturing cost, and improve the efficiency of a PV inverter\",\"authors\":\"A. Alabakhshizadeh, O. Midtgård, K. Boysen\",\"doi\":\"10.1109/PVSC.2013.6745064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photovoltaic inverters are the major functional units of the photovoltaic systems. Therefore, efficiency and cost are vitally important in the design, and operation of the PV system. Magnetic components are the bulkiest component and highly affect the efficiency of the galvanically isolated PV inverter and design of such component generally involves a compromise between the reduction of core loss at the expense of increased winding loss or vice versa. The loss characteristics of the magnetic material itself present a fundamental limitation on core loss reduction, implying that the intrinsic reduction of core loss density depends on magnetic material improvements. Hence, the essential tradeoff between cost, performance and physical size must be done by designers to make the most optimal inductor for their design. A high frequency magnetic powder core inductor used in galvanically isolated PV inverter is analyzed with commercially available finite element analysis software, Maxwell - Ansoft. Results obtained from simulation studies are compared with built prototype show good agreement.\",\"PeriodicalId\":6350,\"journal\":{\"name\":\"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)\",\"volume\":\"13 1\",\"pages\":\"2845-2848\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2013.6745064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2013.6745064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis, design, and evaluation of a high frequency inductor to reduce manufacturing cost, and improve the efficiency of a PV inverter
Photovoltaic inverters are the major functional units of the photovoltaic systems. Therefore, efficiency and cost are vitally important in the design, and operation of the PV system. Magnetic components are the bulkiest component and highly affect the efficiency of the galvanically isolated PV inverter and design of such component generally involves a compromise between the reduction of core loss at the expense of increased winding loss or vice versa. The loss characteristics of the magnetic material itself present a fundamental limitation on core loss reduction, implying that the intrinsic reduction of core loss density depends on magnetic material improvements. Hence, the essential tradeoff between cost, performance and physical size must be done by designers to make the most optimal inductor for their design. A high frequency magnetic powder core inductor used in galvanically isolated PV inverter is analyzed with commercially available finite element analysis software, Maxwell - Ansoft. Results obtained from simulation studies are compared with built prototype show good agreement.