Yu-hsin Chia, C. H. Chu, S. Vyas, Yi-You Huang, D. Tsai, Yuan Luo
{"title":"基于超构透镜的荧光光学切片显微镜","authors":"Yu-hsin Chia, C. H. Chu, S. Vyas, Yi-You Huang, D. Tsai, Yuan Luo","doi":"10.1117/12.2676655","DOIUrl":null,"url":null,"abstract":"Microscopy is an essential tool for biomedical research and clinical diagnosis. Nevertheless, conventional wide-field imaging system lacks optical sectioning ability, restricting applications in thick tissues. Recently, HiLo microscopy improved sectioning efficiency but still requires axial movement. Here, we propose the Moiré metalens to develop the varifocal metalens based fluorescence optical sectioning microscopy. It leveraging metasurfaces capabilities to control optical properties. Our system enables optical sectioning and 3D imaging capability. We demonstrate multiplane HiLo optically sectioned images of fluorescent microspheres and ex-vivo mouse brain tissues. This technique opens new possibilities for high-contrast microscopy in biomedical research and clinical diagnosis.","PeriodicalId":13820,"journal":{"name":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","volume":"162 1","pages":"126480F - 126480F-4"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moiré metalens-based fluorescence optical sectioning microscopy\",\"authors\":\"Yu-hsin Chia, C. H. Chu, S. Vyas, Yi-You Huang, D. Tsai, Yuan Luo\",\"doi\":\"10.1117/12.2676655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microscopy is an essential tool for biomedical research and clinical diagnosis. Nevertheless, conventional wide-field imaging system lacks optical sectioning ability, restricting applications in thick tissues. Recently, HiLo microscopy improved sectioning efficiency but still requires axial movement. Here, we propose the Moiré metalens to develop the varifocal metalens based fluorescence optical sectioning microscopy. It leveraging metasurfaces capabilities to control optical properties. Our system enables optical sectioning and 3D imaging capability. We demonstrate multiplane HiLo optically sectioned images of fluorescent microspheres and ex-vivo mouse brain tissues. This technique opens new possibilities for high-contrast microscopy in biomedical research and clinical diagnosis.\",\"PeriodicalId\":13820,\"journal\":{\"name\":\"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)\",\"volume\":\"162 1\",\"pages\":\"126480F - 126480F-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2676655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2676655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Microscopy is an essential tool for biomedical research and clinical diagnosis. Nevertheless, conventional wide-field imaging system lacks optical sectioning ability, restricting applications in thick tissues. Recently, HiLo microscopy improved sectioning efficiency but still requires axial movement. Here, we propose the Moiré metalens to develop the varifocal metalens based fluorescence optical sectioning microscopy. It leveraging metasurfaces capabilities to control optical properties. Our system enables optical sectioning and 3D imaging capability. We demonstrate multiplane HiLo optically sectioned images of fluorescent microspheres and ex-vivo mouse brain tissues. This technique opens new possibilities for high-contrast microscopy in biomedical research and clinical diagnosis.