{"title":"推荐系统的潜在特征建模","authors":"Abdullah Alhejaili, S. Fatima","doi":"10.1109/IRI49571.2020.00057","DOIUrl":null,"url":null,"abstract":"Matrix factorization is one of the most successful model-based collaborative filtering approaches in recommender systems. Nevertheless, useful latent user features can lead to a more accurate recommendation. However, user privacy and cross-domains access restrictions challenge collection and analysis of such information. In this study, we propose a feature extraction method (WAFE) which leverages user-item interaction history to extract useful latent user features. We also propose a rating prediction approach that incorporates the local mean of users’ and items’ ratings. We evaluate our proposed model using two real-world benchmark datasets and compare its performance against the state-of-the-art matrix factorization collaborative filtering methods. Evaluation results show that proposed method outperforms the existing methods.","PeriodicalId":93159,"journal":{"name":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","volume":"10 1","pages":"349-356"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Latent Feature Modelling for Recommender Systems\",\"authors\":\"Abdullah Alhejaili, S. Fatima\",\"doi\":\"10.1109/IRI49571.2020.00057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Matrix factorization is one of the most successful model-based collaborative filtering approaches in recommender systems. Nevertheless, useful latent user features can lead to a more accurate recommendation. However, user privacy and cross-domains access restrictions challenge collection and analysis of such information. In this study, we propose a feature extraction method (WAFE) which leverages user-item interaction history to extract useful latent user features. We also propose a rating prediction approach that incorporates the local mean of users’ and items’ ratings. We evaluate our proposed model using two real-world benchmark datasets and compare its performance against the state-of-the-art matrix factorization collaborative filtering methods. Evaluation results show that proposed method outperforms the existing methods.\",\"PeriodicalId\":93159,\"journal\":{\"name\":\"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...\",\"volume\":\"10 1\",\"pages\":\"349-356\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI49571.2020.00057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI49571.2020.00057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

矩阵分解是推荐系统中最成功的基于模型的协同过滤方法之一。然而,有用的潜在用户特性可以带来更准确的推荐。然而,用户隐私和跨域访问限制对这些信息的收集和分析提出了挑战。在这项研究中,我们提出了一种特征提取方法(WAFE),它利用用户-项目交互历史来提取有用的潜在用户特征。我们还提出了一种结合用户和项目评分的局部平均值的评分预测方法。我们使用两个真实世界的基准数据集来评估我们提出的模型,并将其性能与最先进的矩阵分解协同过滤方法进行比较。评价结果表明,该方法优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Latent Feature Modelling for Recommender Systems
Matrix factorization is one of the most successful model-based collaborative filtering approaches in recommender systems. Nevertheless, useful latent user features can lead to a more accurate recommendation. However, user privacy and cross-domains access restrictions challenge collection and analysis of such information. In this study, we propose a feature extraction method (WAFE) which leverages user-item interaction history to extract useful latent user features. We also propose a rating prediction approach that incorporates the local mean of users’ and items’ ratings. We evaluate our proposed model using two real-world benchmark datasets and compare its performance against the state-of-the-art matrix factorization collaborative filtering methods. Evaluation results show that proposed method outperforms the existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Attention-Guided Generative Adversarial Network to Address Atypical Anatomy in Synthetic CT Generation. Natural Language-based Integration of Online Review Datasets for Identification of Sex Trafficking Businesses. An Adaptive and Dynamic Biosensor Epidemic Model for COVID-19 Relating the Empirical Foundations of Attack Generation and Vulnerability Discovery Latent Feature Modelling for Recommender Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1