Honghui Liu, Z. Liang, C. Yan, Yuebo Liu, Fengge Wang, Yanyan Xu, Junyu Shen, Z. Xiao, Zhisheng Wu, Yang Liu, Qi Wang, Xinqiang Wang, Baijun Zhang
{"title":"具有梯度势垒层的AlGaN/GaN异质结构肖特基势垒二极管","authors":"Honghui Liu, Z. Liang, C. Yan, Yuebo Liu, Fengge Wang, Yanyan Xu, Junyu Shen, Z. Xiao, Zhisheng Wu, Yang Liu, Qi Wang, Xinqiang Wang, Baijun Zhang","doi":"10.1155/2022/5885992","DOIUrl":null,"url":null,"abstract":"The AlGaN/GaN Schottky barrier diodes (SBDs) working as high-power mixer and multiplier show great potential in millimeter wave (MMW) field owing to their high breakdown voltage. Nevertheless, its further application is severely limited by large reverse leakage current (Jr) since the two-dimensional electron gas (2DEG) channel is hard to be pinched off at low voltage. To address this limitation, a graded AlGaN/GaN heterostructure is introduced to extend the 2DEG channel into a quasi-three-dimensional electron slab. By comparing the fixed Al composition AlGaN/GaN SBD, Jr of the graded AlGaN/GaN SBD is significantly reduced due to the extension of channel carriers, confirming the effective Jr suppression effect of this structure. Furthermore, on this basis, a recessed anode structure is utilized to expect a smaller Jr. The results indicated that the graded AlGaN/GaN SBDs with air-bridge structure have achieved a pretty low Jr value (1.6 × 10−13 A at -15 V), and its cutoff frequency is as high as 60.6 GHz. It is expected that such SBDs with low Jr have significant advantages in future applications.","PeriodicalId":7382,"journal":{"name":"Advances in Condensed Matter Physics","volume":"125 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AlGaN/GaN Heterostructure Schottky Barrier Diodes with Graded Barrier Layer\",\"authors\":\"Honghui Liu, Z. Liang, C. Yan, Yuebo Liu, Fengge Wang, Yanyan Xu, Junyu Shen, Z. Xiao, Zhisheng Wu, Yang Liu, Qi Wang, Xinqiang Wang, Baijun Zhang\",\"doi\":\"10.1155/2022/5885992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The AlGaN/GaN Schottky barrier diodes (SBDs) working as high-power mixer and multiplier show great potential in millimeter wave (MMW) field owing to their high breakdown voltage. Nevertheless, its further application is severely limited by large reverse leakage current (Jr) since the two-dimensional electron gas (2DEG) channel is hard to be pinched off at low voltage. To address this limitation, a graded AlGaN/GaN heterostructure is introduced to extend the 2DEG channel into a quasi-three-dimensional electron slab. By comparing the fixed Al composition AlGaN/GaN SBD, Jr of the graded AlGaN/GaN SBD is significantly reduced due to the extension of channel carriers, confirming the effective Jr suppression effect of this structure. Furthermore, on this basis, a recessed anode structure is utilized to expect a smaller Jr. The results indicated that the graded AlGaN/GaN SBDs with air-bridge structure have achieved a pretty low Jr value (1.6 × 10−13 A at -15 V), and its cutoff frequency is as high as 60.6 GHz. It is expected that such SBDs with low Jr have significant advantages in future applications.\",\"PeriodicalId\":7382,\"journal\":{\"name\":\"Advances in Condensed Matter Physics\",\"volume\":\"125 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Condensed Matter Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/5885992\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2022/5885992","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
AlGaN/GaN Heterostructure Schottky Barrier Diodes with Graded Barrier Layer
The AlGaN/GaN Schottky barrier diodes (SBDs) working as high-power mixer and multiplier show great potential in millimeter wave (MMW) field owing to their high breakdown voltage. Nevertheless, its further application is severely limited by large reverse leakage current (Jr) since the two-dimensional electron gas (2DEG) channel is hard to be pinched off at low voltage. To address this limitation, a graded AlGaN/GaN heterostructure is introduced to extend the 2DEG channel into a quasi-three-dimensional electron slab. By comparing the fixed Al composition AlGaN/GaN SBD, Jr of the graded AlGaN/GaN SBD is significantly reduced due to the extension of channel carriers, confirming the effective Jr suppression effect of this structure. Furthermore, on this basis, a recessed anode structure is utilized to expect a smaller Jr. The results indicated that the graded AlGaN/GaN SBDs with air-bridge structure have achieved a pretty low Jr value (1.6 × 10−13 A at -15 V), and its cutoff frequency is as high as 60.6 GHz. It is expected that such SBDs with low Jr have significant advantages in future applications.
期刊介绍:
Advances in Condensed Matter Physics publishes articles on the experimental and theoretical study of the physics of materials in solid, liquid, amorphous, and exotic states. Papers consider the quantum, classical, and statistical mechanics of materials; their structure, dynamics, and phase transitions; and their magnetic, electronic, thermal, and optical properties.
Submission of original research, and focused review articles, is welcomed from researchers from across the entire condensed matter physics community.