Beesetti Kiran Kumar, Saurabh Bilgaiyan, B. Mishra
{"title":"基于投票估计器的机器学习基本模型集成的软件工作量估计","authors":"Beesetti Kiran Kumar, Saurabh Bilgaiyan, B. Mishra","doi":"10.14569/ijacsa.2023.0140222","DOIUrl":null,"url":null,"abstract":"—For a long time, researchers have been working to predict the effort of software development with the help of various machine learning algorithms. These algorithms are known for better understanding the underlying facts inside the data and improving the prediction rate than conventional approaches such as line of code and functional point approaches. According to no free lunch theory, there is no single algorithm which gives better predictions on all the datasets. To remove this bias our work aims to provide a better model for software effort estimation and thereby reduce the distance between the actual and predicted effort for future projects. The authors proposed an ensembling of regressor models using voting estimator for better predictions to reduce the error rate to over the biasness provide by single machine learning algorithm. The results obtained show that the ensemble models were better than those from the single models used on different datasets.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"21 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Software Effort Estimation through Ensembling of Base Models in Machine Learning using a Voting Estimator\",\"authors\":\"Beesetti Kiran Kumar, Saurabh Bilgaiyan, B. Mishra\",\"doi\":\"10.14569/ijacsa.2023.0140222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"—For a long time, researchers have been working to predict the effort of software development with the help of various machine learning algorithms. These algorithms are known for better understanding the underlying facts inside the data and improving the prediction rate than conventional approaches such as line of code and functional point approaches. According to no free lunch theory, there is no single algorithm which gives better predictions on all the datasets. To remove this bias our work aims to provide a better model for software effort estimation and thereby reduce the distance between the actual and predicted effort for future projects. The authors proposed an ensembling of regressor models using voting estimator for better predictions to reduce the error rate to over the biasness provide by single machine learning algorithm. The results obtained show that the ensemble models were better than those from the single models used on different datasets.\",\"PeriodicalId\":13824,\"journal\":{\"name\":\"International Journal of Advanced Computer Science and Applications\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Computer Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14569/ijacsa.2023.0140222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/ijacsa.2023.0140222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Software Effort Estimation through Ensembling of Base Models in Machine Learning using a Voting Estimator
—For a long time, researchers have been working to predict the effort of software development with the help of various machine learning algorithms. These algorithms are known for better understanding the underlying facts inside the data and improving the prediction rate than conventional approaches such as line of code and functional point approaches. According to no free lunch theory, there is no single algorithm which gives better predictions on all the datasets. To remove this bias our work aims to provide a better model for software effort estimation and thereby reduce the distance between the actual and predicted effort for future projects. The authors proposed an ensembling of regressor models using voting estimator for better predictions to reduce the error rate to over the biasness provide by single machine learning algorithm. The results obtained show that the ensemble models were better than those from the single models used on different datasets.
期刊介绍:
IJACSA is a scholarly computer science journal representing the best in research. Its mission is to provide an outlet for quality research to be publicised and published to a global audience. The journal aims to publish papers selected through rigorous double-blind peer review to ensure originality, timeliness, relevance, and readability. In sync with the Journal''s vision "to be a respected publication that publishes peer reviewed research articles, as well as review and survey papers contributed by International community of Authors", we have drawn reviewers and editors from Institutions and Universities across the globe. A double blind peer review process is conducted to ensure that we retain high standards. At IJACSA, we stand strong because we know that global challenges make way for new innovations, new ways and new talent. International Journal of Advanced Computer Science and Applications publishes carefully refereed research, review and survey papers which offer a significant contribution to the computer science literature, and which are of interest to a wide audience. Coverage extends to all main-stream branches of computer science and related applications