{"title":"双协同无人机增强现实系统的隐蔽无线通信","authors":"Guo Yang;Yuwen Qian;Ke Ren;Zhen Mei;Feng Shu;Xiangwei Zhou;Wen Wu","doi":"10.1109/JSTSP.2023.3299116","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicle (UAV) aided augmented reality (AR) has developed rapidly in recent years and has become a promising technology in disaster rescue, transportation, agriculture, and environmental monitoring. However, the information leakage is challenging the usage of UAV-aided AR systems with wireless communications. In this article, a dual UAVs assisted covert communication system (CCS) is proposed, where one UAV transmits the covert message to ground receivers and a cooperative UAV performs as a jammer to interfere with the malicious eavesdropper. However, flying UAVs result in fast channel fading between the UAVs and ground nodes, which reduces the covert rate of the CCSs. To maximize the average covert rate, we formulated a non-convex optimization problem under the constraint that the detection error probability (DEP) of the monitor is minimum. Furthermore, the problem is decomposed into three subproblems and transformed into convex, and these subproblems are solved alternately by designing an iterative algorithm. Simulation results reveal that the average covert rate performance of the proposed optimization algorithm can respectively achieve 16% and 40% gains than those without covert constraint and without the cooperative UAV used as a jammer.","PeriodicalId":13038,"journal":{"name":"IEEE Journal of Selected Topics in Signal Processing","volume":"17 5","pages":"1119-1130"},"PeriodicalIF":8.7000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Covert Wireless Communications for Augmented Reality Systems With Dual Cooperative UAVs\",\"authors\":\"Guo Yang;Yuwen Qian;Ke Ren;Zhen Mei;Feng Shu;Xiangwei Zhou;Wen Wu\",\"doi\":\"10.1109/JSTSP.2023.3299116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unmanned aerial vehicle (UAV) aided augmented reality (AR) has developed rapidly in recent years and has become a promising technology in disaster rescue, transportation, agriculture, and environmental monitoring. However, the information leakage is challenging the usage of UAV-aided AR systems with wireless communications. In this article, a dual UAVs assisted covert communication system (CCS) is proposed, where one UAV transmits the covert message to ground receivers and a cooperative UAV performs as a jammer to interfere with the malicious eavesdropper. However, flying UAVs result in fast channel fading between the UAVs and ground nodes, which reduces the covert rate of the CCSs. To maximize the average covert rate, we formulated a non-convex optimization problem under the constraint that the detection error probability (DEP) of the monitor is minimum. Furthermore, the problem is decomposed into three subproblems and transformed into convex, and these subproblems are solved alternately by designing an iterative algorithm. Simulation results reveal that the average covert rate performance of the proposed optimization algorithm can respectively achieve 16% and 40% gains than those without covert constraint and without the cooperative UAV used as a jammer.\",\"PeriodicalId\":13038,\"journal\":{\"name\":\"IEEE Journal of Selected Topics in Signal Processing\",\"volume\":\"17 5\",\"pages\":\"1119-1130\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Topics in Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10195191/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10195191/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Covert Wireless Communications for Augmented Reality Systems With Dual Cooperative UAVs
Unmanned aerial vehicle (UAV) aided augmented reality (AR) has developed rapidly in recent years and has become a promising technology in disaster rescue, transportation, agriculture, and environmental monitoring. However, the information leakage is challenging the usage of UAV-aided AR systems with wireless communications. In this article, a dual UAVs assisted covert communication system (CCS) is proposed, where one UAV transmits the covert message to ground receivers and a cooperative UAV performs as a jammer to interfere with the malicious eavesdropper. However, flying UAVs result in fast channel fading between the UAVs and ground nodes, which reduces the covert rate of the CCSs. To maximize the average covert rate, we formulated a non-convex optimization problem under the constraint that the detection error probability (DEP) of the monitor is minimum. Furthermore, the problem is decomposed into three subproblems and transformed into convex, and these subproblems are solved alternately by designing an iterative algorithm. Simulation results reveal that the average covert rate performance of the proposed optimization algorithm can respectively achieve 16% and 40% gains than those without covert constraint and without the cooperative UAV used as a jammer.
期刊介绍:
The IEEE Journal of Selected Topics in Signal Processing (JSTSP) focuses on the Field of Interest of the IEEE Signal Processing Society, which encompasses the theory and application of various signal processing techniques. These techniques include filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals using digital or analog devices. The term "signal" covers a wide range of data types, including audio, video, speech, image, communication, geophysical, sonar, radar, medical, musical, and others.
The journal format allows for in-depth exploration of signal processing topics, enabling the Society to cover both established and emerging areas. This includes interdisciplinary fields such as biomedical engineering and language processing, as well as areas not traditionally associated with engineering.