基于改进仿生神经网络的水下航行器三维实时路径规划

J. Ni, Liuying Wu, Shihao Wang, Kang Wang
{"title":"基于改进仿生神经网络的水下航行器三维实时路径规划","authors":"J. Ni, Liuying Wu, Shihao Wang, Kang Wang","doi":"10.1109/ICCE-TW.2016.7520935","DOIUrl":null,"url":null,"abstract":"An improved algorithm based on bio-inspired neural network is proposed for Autonomous Underwater Vehicle (AUV) real-time path planning in three-dimensional (3D) environment in this paper. The algorithm has made an improvement in the shunting equation of the neural network model which is conductive to path planning especially in dynamic environments. The proposed approach has high efficiency and good real-time performance.","PeriodicalId":6620,"journal":{"name":"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","volume":"23 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"3D real-time path planning for AUV based on improved bio-inspired neural network\",\"authors\":\"J. Ni, Liuying Wu, Shihao Wang, Kang Wang\",\"doi\":\"10.1109/ICCE-TW.2016.7520935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An improved algorithm based on bio-inspired neural network is proposed for Autonomous Underwater Vehicle (AUV) real-time path planning in three-dimensional (3D) environment in this paper. The algorithm has made an improvement in the shunting equation of the neural network model which is conductive to path planning especially in dynamic environments. The proposed approach has high efficiency and good real-time performance.\",\"PeriodicalId\":6620,\"journal\":{\"name\":\"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)\",\"volume\":\"23 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-TW.2016.7520935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-TW.2016.7520935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种基于仿生神经网络的自主水下航行器(AUV)三维环境实时路径规划改进算法。该算法对神经网络模型的分流方程进行了改进,有利于动态环境下的路径规划。该方法效率高,实时性好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D real-time path planning for AUV based on improved bio-inspired neural network
An improved algorithm based on bio-inspired neural network is proposed for Autonomous Underwater Vehicle (AUV) real-time path planning in three-dimensional (3D) environment in this paper. The algorithm has made an improvement in the shunting equation of the neural network model which is conductive to path planning especially in dynamic environments. The proposed approach has high efficiency and good real-time performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Microorganism Image Counting Based on Multi-threshold Optimization An immersive VR experience mode design Methods and apparatuses for drying electronic devices Topology constructing and restructuring mechanisms for Bluetooth radio networks Coordinate system for elliptic curve cryptosystem on twisted Edwards curve
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1