{"title":"基于加权系数法的地下隧道信号传播建模","authors":"Yusuf Karaca, �zg�r Tamer","doi":"10.47037/2021.aces.j.360815","DOIUrl":null,"url":null,"abstract":"─ The propagation of electromagnetic waves guided in tunnels and mines is an area of scientific study which is hard to model due to multiple reflections on walls and surrounding obstacles. A novel propagation model for underground tunnels based on the weighting sum of the log-distance propagation model, the modified waveguide model and, the far zone propagation model for the ultra-high frequency (UHF) band is proposed in this paper. The propagation model is divided into five regions based on the distance between the transmitter and the receiver. Each region shows a different propagation characteristic and modeled with weighting sum of the base propagation models. Our model was tested in a tunnel with 2 m x 1.5 m cross-section and 250 m length. Measurement results are consistent with the proposed propagation model. Index Terms ─ Propagation modeling, underground tunnel, underground communications.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Signal Propagation Modeling Based on Weighting Coefficients Method in Underground Tunnels\",\"authors\":\"Yusuf Karaca, �zg�r Tamer\",\"doi\":\"10.47037/2021.aces.j.360815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"─ The propagation of electromagnetic waves guided in tunnels and mines is an area of scientific study which is hard to model due to multiple reflections on walls and surrounding obstacles. A novel propagation model for underground tunnels based on the weighting sum of the log-distance propagation model, the modified waveguide model and, the far zone propagation model for the ultra-high frequency (UHF) band is proposed in this paper. The propagation model is divided into five regions based on the distance between the transmitter and the receiver. Each region shows a different propagation characteristic and modeled with weighting sum of the base propagation models. Our model was tested in a tunnel with 2 m x 1.5 m cross-section and 250 m length. Measurement results are consistent with the proposed propagation model. Index Terms ─ Propagation modeling, underground tunnel, underground communications.\",\"PeriodicalId\":8207,\"journal\":{\"name\":\"Applied Computational Electromagnetics Society Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computational Electromagnetics Society Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.47037/2021.aces.j.360815\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computational Electromagnetics Society Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.47037/2021.aces.j.360815","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Signal Propagation Modeling Based on Weighting Coefficients Method in Underground Tunnels
─ The propagation of electromagnetic waves guided in tunnels and mines is an area of scientific study which is hard to model due to multiple reflections on walls and surrounding obstacles. A novel propagation model for underground tunnels based on the weighting sum of the log-distance propagation model, the modified waveguide model and, the far zone propagation model for the ultra-high frequency (UHF) band is proposed in this paper. The propagation model is divided into five regions based on the distance between the transmitter and the receiver. Each region shows a different propagation characteristic and modeled with weighting sum of the base propagation models. Our model was tested in a tunnel with 2 m x 1.5 m cross-section and 250 m length. Measurement results are consistent with the proposed propagation model. Index Terms ─ Propagation modeling, underground tunnel, underground communications.
期刊介绍:
The ACES Journal is devoted to the exchange of information in computational electromagnetics, to the advancement of the state of the art, and to the promotion of related technical activities. A primary objective of the information exchange is the elimination of the need to "re-invent the wheel" to solve a previously solved computational problem in electrical engineering, physics, or related fields of study.
The ACES Journal welcomes original, previously unpublished papers, relating to applied computational electromagnetics. All papers are refereed.
A unique feature of ACES Journal is the publication of unsuccessful efforts in applied computational electromagnetics. Publication of such material provides a means to discuss problem areas in electromagnetic modeling. Manuscripts representing an unsuccessful application or negative result in computational electromagnetics is considered for publication only if a reasonable expectation of success (and a reasonable effort) are reflected.
The technical activities promoted by this publication include code validation, performance analysis, and input/output standardization; code or technique optimization and error minimization; innovations in solution technique or in data input/output; identification of new applications for electromagnetics modeling codes and techniques; integration of computational electromagnetics techniques with new computer architectures; and correlation of computational parameters with physical mechanisms.