Tatsuya Yokota, Kazuya Kawai, M. Sakata, Y. Kimura, H. Hontani
{"title":"基于深度图像先验的非负矩阵分解方法的PET图像动态重构","authors":"Tatsuya Yokota, Kazuya Kawai, M. Sakata, Y. Kimura, H. Hontani","doi":"10.1109/ICCV.2019.00322","DOIUrl":null,"url":null,"abstract":"We propose a method that reconstructs dynamic positron emission tomography (PET) images from given sinograms by using non-negative matrix factorization (NMF) incorporated with a deep image prior (DIP) for appropriately constraining the spatial patterns of resultant images. The proposed method can reconstruct dynamic PET images with higher signal-to-noise ratio (SNR) and blindly decompose an image matrix into pairs of spatial and temporal factors. The former represent homogeneous tissues with different kinetic parameters and the latter represent the time activity curves that are observed in the corresponding homogeneous tissues. We employ U-Nets combined in parallel for DIP and each of the U-nets is used to extract each spatial factor decomposed from the data matrix. Experimental results show that the proposed method outperforms conventional methods and can extract spatial factors that represent the homogeneous tissues.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"31 1","pages":"3126-3135"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Dynamic PET Image Reconstruction Using Nonnegative Matrix Factorization Incorporated With Deep Image Prior\",\"authors\":\"Tatsuya Yokota, Kazuya Kawai, M. Sakata, Y. Kimura, H. Hontani\",\"doi\":\"10.1109/ICCV.2019.00322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a method that reconstructs dynamic positron emission tomography (PET) images from given sinograms by using non-negative matrix factorization (NMF) incorporated with a deep image prior (DIP) for appropriately constraining the spatial patterns of resultant images. The proposed method can reconstruct dynamic PET images with higher signal-to-noise ratio (SNR) and blindly decompose an image matrix into pairs of spatial and temporal factors. The former represent homogeneous tissues with different kinetic parameters and the latter represent the time activity curves that are observed in the corresponding homogeneous tissues. We employ U-Nets combined in parallel for DIP and each of the U-nets is used to extract each spatial factor decomposed from the data matrix. Experimental results show that the proposed method outperforms conventional methods and can extract spatial factors that represent the homogeneous tissues.\",\"PeriodicalId\":6728,\"journal\":{\"name\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"volume\":\"31 1\",\"pages\":\"3126-3135\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2019.00322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic PET Image Reconstruction Using Nonnegative Matrix Factorization Incorporated With Deep Image Prior
We propose a method that reconstructs dynamic positron emission tomography (PET) images from given sinograms by using non-negative matrix factorization (NMF) incorporated with a deep image prior (DIP) for appropriately constraining the spatial patterns of resultant images. The proposed method can reconstruct dynamic PET images with higher signal-to-noise ratio (SNR) and blindly decompose an image matrix into pairs of spatial and temporal factors. The former represent homogeneous tissues with different kinetic parameters and the latter represent the time activity curves that are observed in the corresponding homogeneous tissues. We employ U-Nets combined in parallel for DIP and each of the U-nets is used to extract each spatial factor decomposed from the data matrix. Experimental results show that the proposed method outperforms conventional methods and can extract spatial factors that represent the homogeneous tissues.