基于深度图像先验的非负矩阵分解方法的PET图像动态重构

Tatsuya Yokota, Kazuya Kawai, M. Sakata, Y. Kimura, H. Hontani
{"title":"基于深度图像先验的非负矩阵分解方法的PET图像动态重构","authors":"Tatsuya Yokota, Kazuya Kawai, M. Sakata, Y. Kimura, H. Hontani","doi":"10.1109/ICCV.2019.00322","DOIUrl":null,"url":null,"abstract":"We propose a method that reconstructs dynamic positron emission tomography (PET) images from given sinograms by using non-negative matrix factorization (NMF) incorporated with a deep image prior (DIP) for appropriately constraining the spatial patterns of resultant images. The proposed method can reconstruct dynamic PET images with higher signal-to-noise ratio (SNR) and blindly decompose an image matrix into pairs of spatial and temporal factors. The former represent homogeneous tissues with different kinetic parameters and the latter represent the time activity curves that are observed in the corresponding homogeneous tissues. We employ U-Nets combined in parallel for DIP and each of the U-nets is used to extract each spatial factor decomposed from the data matrix. Experimental results show that the proposed method outperforms conventional methods and can extract spatial factors that represent the homogeneous tissues.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"31 1","pages":"3126-3135"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Dynamic PET Image Reconstruction Using Nonnegative Matrix Factorization Incorporated With Deep Image Prior\",\"authors\":\"Tatsuya Yokota, Kazuya Kawai, M. Sakata, Y. Kimura, H. Hontani\",\"doi\":\"10.1109/ICCV.2019.00322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a method that reconstructs dynamic positron emission tomography (PET) images from given sinograms by using non-negative matrix factorization (NMF) incorporated with a deep image prior (DIP) for appropriately constraining the spatial patterns of resultant images. The proposed method can reconstruct dynamic PET images with higher signal-to-noise ratio (SNR) and blindly decompose an image matrix into pairs of spatial and temporal factors. The former represent homogeneous tissues with different kinetic parameters and the latter represent the time activity curves that are observed in the corresponding homogeneous tissues. We employ U-Nets combined in parallel for DIP and each of the U-nets is used to extract each spatial factor decomposed from the data matrix. Experimental results show that the proposed method outperforms conventional methods and can extract spatial factors that represent the homogeneous tissues.\",\"PeriodicalId\":6728,\"journal\":{\"name\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"volume\":\"31 1\",\"pages\":\"3126-3135\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2019.00322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

本文提出了一种利用非负矩阵分解(NMF)和深度图像先验(DIP)对合成图像的空间模式进行适当约束的方法,从给定的正弦图中重建动态正电子发射断层扫描(PET)图像。该方法可以重建具有较高信噪比的动态PET图像,并将图像矩阵盲目分解为时空因子对。前者表示具有不同动力学参数的均质组织,后者表示在相应的均质组织中观察到的时间活性曲线。我们采用并行组合的U-Nets进行DIP,每个U-Nets用于提取从数据矩阵中分解的每个空间因子。实验结果表明,该方法能较好地提取代表均匀组织的空间因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic PET Image Reconstruction Using Nonnegative Matrix Factorization Incorporated With Deep Image Prior
We propose a method that reconstructs dynamic positron emission tomography (PET) images from given sinograms by using non-negative matrix factorization (NMF) incorporated with a deep image prior (DIP) for appropriately constraining the spatial patterns of resultant images. The proposed method can reconstruct dynamic PET images with higher signal-to-noise ratio (SNR) and blindly decompose an image matrix into pairs of spatial and temporal factors. The former represent homogeneous tissues with different kinetic parameters and the latter represent the time activity curves that are observed in the corresponding homogeneous tissues. We employ U-Nets combined in parallel for DIP and each of the U-nets is used to extract each spatial factor decomposed from the data matrix. Experimental results show that the proposed method outperforms conventional methods and can extract spatial factors that represent the homogeneous tissues.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Very Long Natural Scenery Image Prediction by Outpainting VTNFP: An Image-Based Virtual Try-On Network With Body and Clothing Feature Preservation Towards Latent Attribute Discovery From Triplet Similarities Gaze360: Physically Unconstrained Gaze Estimation in the Wild Attention Bridging Network for Knowledge Transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1