Ishtiaq Maqsood, L. Cundy, M. Biesecker, Jung-Han Kimn, Elise Darlington, Ethan P. Hettwer, Sabina Schill, V. Bommisetty
{"title":"有机体异质结形态中的电荷输运动力学:中尺度蒙特卡罗模拟分析","authors":"Ishtiaq Maqsood, L. Cundy, M. Biesecker, Jung-Han Kimn, Elise Darlington, Ethan P. Hettwer, Sabina Schill, V. Bommisetty","doi":"10.1109/PVSC.2014.6925261","DOIUrl":null,"url":null,"abstract":"Monte Carlo simulation was conducted to analyze the significance of morphology domains on charge transport dynamics in organic bulk heterojunction solar cells. Mesoscale simulation was performed using first reaction method with exponential charge carrier lifetime. Current density vs voltage characteristics were obtained for evenly distributed, graded and ordered morphologies. It was observed that assuming 100% exciton dissociation graded morphology resulted better power conversion efficiency than evenly distributed morphology due to improvement in fill factor (FF).","PeriodicalId":6649,"journal":{"name":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","volume":"65 1","pages":"1758-1761"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Charge transport kinetics in organic bulk heterojunction morphologies: Mesoscale Monte Carlo simulation analysis\",\"authors\":\"Ishtiaq Maqsood, L. Cundy, M. Biesecker, Jung-Han Kimn, Elise Darlington, Ethan P. Hettwer, Sabina Schill, V. Bommisetty\",\"doi\":\"10.1109/PVSC.2014.6925261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monte Carlo simulation was conducted to analyze the significance of morphology domains on charge transport dynamics in organic bulk heterojunction solar cells. Mesoscale simulation was performed using first reaction method with exponential charge carrier lifetime. Current density vs voltage characteristics were obtained for evenly distributed, graded and ordered morphologies. It was observed that assuming 100% exciton dissociation graded morphology resulted better power conversion efficiency than evenly distributed morphology due to improvement in fill factor (FF).\",\"PeriodicalId\":6649,\"journal\":{\"name\":\"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)\",\"volume\":\"65 1\",\"pages\":\"1758-1761\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2014.6925261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2014.6925261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Charge transport kinetics in organic bulk heterojunction morphologies: Mesoscale Monte Carlo simulation analysis
Monte Carlo simulation was conducted to analyze the significance of morphology domains on charge transport dynamics in organic bulk heterojunction solar cells. Mesoscale simulation was performed using first reaction method with exponential charge carrier lifetime. Current density vs voltage characteristics were obtained for evenly distributed, graded and ordered morphologies. It was observed that assuming 100% exciton dissociation graded morphology resulted better power conversion efficiency than evenly distributed morphology due to improvement in fill factor (FF).