无地图视觉重定位:相对于单个图像的度量姿态

Eduardo Arnold, Jamie Wynn, S. Vicente, Guillermo Garcia-Hernando, 'Aron Monszpart, V. Prisacariu, Daniyar Turmukhambetov, Eric Brachmann
{"title":"无地图视觉重定位:相对于单个图像的度量姿态","authors":"Eduardo Arnold, Jamie Wynn, S. Vicente, Guillermo Garcia-Hernando, 'Aron Monszpart, V. Prisacariu, Daniyar Turmukhambetov, Eric Brachmann","doi":"10.48550/arXiv.2210.05494","DOIUrl":null,"url":null,"abstract":". Can we relocalize in a scene represented by a single reference image? Standard visual relocalization requires hundreds of images and scale calibration to build a scene-specific 3D map. In contrast, we propose Map-free Relocalization , i.e. , using only one photo of a scene to enable instant, metric scaled relocalization. Existing datasets are not suitable to benchmark map-free relocalization, due to their focus on large scenes or their limited variability. Thus, we have constructed a new dataset of 655 small places of interest, such as sculptures, murals and fountains, collected worldwide. Each place comes with a reference image to serve as a relocalization anchor, and dozens of query images with known, metric camera poses. The dataset features changing conditions, stark viewpoint changes, high variability across places, and queries with low to no visual overlap with the reference image. We identify two viable families of existing methods to provide baseline results: relative pose regression, and feature matching combined with single-image depth prediction. While these methods show reasonable performance on some favorable scenes in our dataset, map-free relocalization proves to be a challenge that requires new, innovative solutions.","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"11 1","pages":"690-708"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Map-free Visual Relocalization: Metric Pose Relative to a Single Image\",\"authors\":\"Eduardo Arnold, Jamie Wynn, S. Vicente, Guillermo Garcia-Hernando, 'Aron Monszpart, V. Prisacariu, Daniyar Turmukhambetov, Eric Brachmann\",\"doi\":\"10.48550/arXiv.2210.05494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Can we relocalize in a scene represented by a single reference image? Standard visual relocalization requires hundreds of images and scale calibration to build a scene-specific 3D map. In contrast, we propose Map-free Relocalization , i.e. , using only one photo of a scene to enable instant, metric scaled relocalization. Existing datasets are not suitable to benchmark map-free relocalization, due to their focus on large scenes or their limited variability. Thus, we have constructed a new dataset of 655 small places of interest, such as sculptures, murals and fountains, collected worldwide. Each place comes with a reference image to serve as a relocalization anchor, and dozens of query images with known, metric camera poses. The dataset features changing conditions, stark viewpoint changes, high variability across places, and queries with low to no visual overlap with the reference image. We identify two viable families of existing methods to provide baseline results: relative pose regression, and feature matching combined with single-image depth prediction. While these methods show reasonable performance on some favorable scenes in our dataset, map-free relocalization proves to be a challenge that requires new, innovative solutions.\",\"PeriodicalId\":72676,\"journal\":{\"name\":\"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision\",\"volume\":\"11 1\",\"pages\":\"690-708\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2210.05494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.05494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

。我们能否在由单个参考图像表示的场景中重新定位?标准的视觉重新定位需要数百张图像和比例校准来构建特定场景的3D地图。相比之下,我们提出了无地图重新定位,即仅使用场景的一张照片来实现即时的度量尺度重新定位。现有的数据集不适合进行基准测试,因为它们关注的是大场景或有限的可变性。因此,我们构建了一个新的数据集,其中包含655个小景点,如雕塑、壁画和喷泉,收集自世界各地。每个地方都有一个参考图像作为重新定位锚,以及数十个已知的查询图像,公制相机姿势。数据集的特点是不断变化的条件、明显的视点变化、不同地方的高度可变性,以及与参考图像的视觉重叠很少或没有重叠的查询。我们确定了两种可行的现有方法来提供基线结果:相对姿态回归和特征匹配结合单图像深度预测。虽然这些方法在我们数据集中的一些有利场景上显示出合理的性能,但无地图重新定位被证明是一个挑战,需要新的、创新的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Map-free Visual Relocalization: Metric Pose Relative to a Single Image
. Can we relocalize in a scene represented by a single reference image? Standard visual relocalization requires hundreds of images and scale calibration to build a scene-specific 3D map. In contrast, we propose Map-free Relocalization , i.e. , using only one photo of a scene to enable instant, metric scaled relocalization. Existing datasets are not suitable to benchmark map-free relocalization, due to their focus on large scenes or their limited variability. Thus, we have constructed a new dataset of 655 small places of interest, such as sculptures, murals and fountains, collected worldwide. Each place comes with a reference image to serve as a relocalization anchor, and dozens of query images with known, metric camera poses. The dataset features changing conditions, stark viewpoint changes, high variability across places, and queries with low to no visual overlap with the reference image. We identify two viable families of existing methods to provide baseline results: relative pose regression, and feature matching combined with single-image depth prediction. While these methods show reasonable performance on some favorable scenes in our dataset, map-free relocalization proves to be a challenge that requires new, innovative solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dual-Stream Knowledge-Preserving Hashing for Unsupervised Video Retrieval Spatial and Visual Perspective-Taking via View Rotation and Relation Reasoning for Embodied Reference Understanding Rethinking Confidence Calibration for Failure Prediction PCR-CG: Point Cloud Registration via Deep Explicit Color and Geometry Diverse Human Motion Prediction Guided by Multi-level Spatial-Temporal Anchors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1