结合N-grams和比对技术预测g蛋白偶联特异性

B. Cheng, J. Carbonell
{"title":"结合N-grams和比对技术预测g蛋白偶联特异性","authors":"B. Cheng, J. Carbonell","doi":"10.1142/9781860947995_0038","DOIUrl":null,"url":null,"abstract":"G-protein coupled receptors (GPCR) interact with G-proteins to regulate much of the cell’s response to external stimuli; abnormalities in which cause numerous diseases. We developed a new method to predict the families of G-proteins with which it interacts, given its residue sequence. We combine both alignment and n-gram features. The former captures long-range interactions but assumes the linear ordering of conserved segments is preserved. The latter makes no such assumption but cannot capture long-range interactions. By combining alignment and n-gram features, and using the entire GPCR sequence (instead of intracellular regions alone, as was done by others), our method outperformed the current state-of-the-art in precision, recall and F1, attaining 0.753 in F1 and 0.796 in accuracy on the PTbase 2004 dataset. Moreover, analysis of our results shows that the majority of coupling specificity information lies in the beginning of the 2nd intracellular loop and over the length of the 3rd.","PeriodicalId":74513,"journal":{"name":"Proceedings of the ... Asia-Pacific bioinformatics conference","volume":"197 1","pages":"363-372"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Combining N-grams and Alignment in G-protein Coupling Specificity Prediction\",\"authors\":\"B. Cheng, J. Carbonell\",\"doi\":\"10.1142/9781860947995_0038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"G-protein coupled receptors (GPCR) interact with G-proteins to regulate much of the cell’s response to external stimuli; abnormalities in which cause numerous diseases. We developed a new method to predict the families of G-proteins with which it interacts, given its residue sequence. We combine both alignment and n-gram features. The former captures long-range interactions but assumes the linear ordering of conserved segments is preserved. The latter makes no such assumption but cannot capture long-range interactions. By combining alignment and n-gram features, and using the entire GPCR sequence (instead of intracellular regions alone, as was done by others), our method outperformed the current state-of-the-art in precision, recall and F1, attaining 0.753 in F1 and 0.796 in accuracy on the PTbase 2004 dataset. Moreover, analysis of our results shows that the majority of coupling specificity information lies in the beginning of the 2nd intracellular loop and over the length of the 3rd.\",\"PeriodicalId\":74513,\"journal\":{\"name\":\"Proceedings of the ... Asia-Pacific bioinformatics conference\",\"volume\":\"197 1\",\"pages\":\"363-372\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... Asia-Pacific bioinformatics conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9781860947995_0038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Asia-Pacific bioinformatics conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781860947995_0038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

g蛋白偶联受体(GPCR)与g蛋白相互作用,调节细胞对外界刺激的反应;引起许多疾病的异常。我们开发了一种新的方法来预测与它相互作用的g蛋白家族,给定它的残基序列。我们结合了对齐和n-gram特征。前者捕获远程相互作用,但假设保留了保守片段的线性顺序。后者没有这样的假设,但无法捕捉远程相互作用。通过结合比对和n-gram特征,并使用整个GPCR序列(而不是像其他人那样单独使用细胞内区域),我们的方法在精度,召回率和F1方面优于当前最先进的技术,在PTbase 2004数据集上F1达到0.753,准确性为0.796。此外,我们的结果分析表明,大多数偶联特异性信息位于细胞内第2环的开始和第3环的长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining N-grams and Alignment in G-protein Coupling Specificity Prediction
G-protein coupled receptors (GPCR) interact with G-proteins to regulate much of the cell’s response to external stimuli; abnormalities in which cause numerous diseases. We developed a new method to predict the families of G-proteins with which it interacts, given its residue sequence. We combine both alignment and n-gram features. The former captures long-range interactions but assumes the linear ordering of conserved segments is preserved. The latter makes no such assumption but cannot capture long-range interactions. By combining alignment and n-gram features, and using the entire GPCR sequence (instead of intracellular regions alone, as was done by others), our method outperformed the current state-of-the-art in precision, recall and F1, attaining 0.753 in F1 and 0.796 in accuracy on the PTbase 2004 dataset. Moreover, analysis of our results shows that the majority of coupling specificity information lies in the beginning of the 2nd intracellular loop and over the length of the 3rd.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tuning Privacy-Utility Tradeoff in Genomic Studies Using Selective SNP Hiding. The Future of Bioinformatics CHEMICAL COMPOUND CLASSIFICATION WITH AUTOMATICALLY MINED STRUCTURE PATTERNS. Predicting Nucleolar Proteins Using Support-Vector Machines Proceedings of the 6th Asia-Pacific Bioinformatics Conference, APBC 2008, 14-17 January 2008, Kyoto, Japan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1