{"title":"分层孪晶高熵合金的协同变形机制","authors":"Wenjun Lu, Jianjun Li","doi":"10.2139/ssrn.3834125","DOIUrl":null,"url":null,"abstract":"Abstract The mechanical properties of crystalline materials can be efficiently optimized using a hierarchical twinned structure. Conventional deformation mechanisms for coherent Σ3 boundaries generally involve three basic models: cross-slip, partial dislocation step, and full dislocation step. In this study, we report a novel deformation mechanism that allows the co-existence of twin-separation, phase transformations, grain rotation, and cracking, around a triple junction of twin boundaries in a hierarchical twinned high-entropy alloy. The deformation mechanisms in the reference high-entropy alloy (Fe-30Mn-10Co-10Cr at. %) were investigated using LAADF-STEM. The triple junction of the hierarchical twinned structure gradually deformed during in-situ strain and showed mechanisms significantly different from that observed in the purely twinned structures. These new mechanisms are referred to as “novel synergetic deformation mechanisms of hierarchical twin boundaries.” Understanding the fundamental mechanisms of the hierarchical twin boundaries under deformation could assist the design of strong and ductile bulk materials with hierarchical twinned structure.","PeriodicalId":18268,"journal":{"name":"Materials Engineering eJournal","volume":"136 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Synergetic Deformation Mechanism in Hierarchical Twinned High-Entropy Alloys\",\"authors\":\"Wenjun Lu, Jianjun Li\",\"doi\":\"10.2139/ssrn.3834125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The mechanical properties of crystalline materials can be efficiently optimized using a hierarchical twinned structure. Conventional deformation mechanisms for coherent Σ3 boundaries generally involve three basic models: cross-slip, partial dislocation step, and full dislocation step. In this study, we report a novel deformation mechanism that allows the co-existence of twin-separation, phase transformations, grain rotation, and cracking, around a triple junction of twin boundaries in a hierarchical twinned high-entropy alloy. The deformation mechanisms in the reference high-entropy alloy (Fe-30Mn-10Co-10Cr at. %) were investigated using LAADF-STEM. The triple junction of the hierarchical twinned structure gradually deformed during in-situ strain and showed mechanisms significantly different from that observed in the purely twinned structures. These new mechanisms are referred to as “novel synergetic deformation mechanisms of hierarchical twin boundaries.” Understanding the fundamental mechanisms of the hierarchical twin boundaries under deformation could assist the design of strong and ductile bulk materials with hierarchical twinned structure.\",\"PeriodicalId\":18268,\"journal\":{\"name\":\"Materials Engineering eJournal\",\"volume\":\"136 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Engineering eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3834125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Engineering eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3834125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synergetic Deformation Mechanism in Hierarchical Twinned High-Entropy Alloys
Abstract The mechanical properties of crystalline materials can be efficiently optimized using a hierarchical twinned structure. Conventional deformation mechanisms for coherent Σ3 boundaries generally involve three basic models: cross-slip, partial dislocation step, and full dislocation step. In this study, we report a novel deformation mechanism that allows the co-existence of twin-separation, phase transformations, grain rotation, and cracking, around a triple junction of twin boundaries in a hierarchical twinned high-entropy alloy. The deformation mechanisms in the reference high-entropy alloy (Fe-30Mn-10Co-10Cr at. %) were investigated using LAADF-STEM. The triple junction of the hierarchical twinned structure gradually deformed during in-situ strain and showed mechanisms significantly different from that observed in the purely twinned structures. These new mechanisms are referred to as “novel synergetic deformation mechanisms of hierarchical twin boundaries.” Understanding the fundamental mechanisms of the hierarchical twin boundaries under deformation could assist the design of strong and ductile bulk materials with hierarchical twinned structure.