{"title":"利用改进的频繁模式树挖掘负关联规则","authors":"E. B. Krishna, B. Rama, A. Nagaraju","doi":"10.1109/ICCCT2.2014.7066748","DOIUrl":null,"url":null,"abstract":"Extraction of interesting negative association rules from large data sets is measured as a key feature of data mining. Many researchers discovered numerous algorithms and methods to find out negative and positive association rules. From the existing approaches, the frequent pattern growth (FP-Growth) approach is well-organized and capable method for finding the item sets which are frequent, without the generation of candidate item sets. The drawback of FP-Growth is it discovers a huge amount of conditional FP-Tree. We propose a novel, improved FP-Tree for extracting negative association rules without generating conditional FP-Tree.","PeriodicalId":6860,"journal":{"name":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","volume":"9 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Mining of negative association rules using improved frequent pattern tree\",\"authors\":\"E. B. Krishna, B. Rama, A. Nagaraju\",\"doi\":\"10.1109/ICCCT2.2014.7066748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extraction of interesting negative association rules from large data sets is measured as a key feature of data mining. Many researchers discovered numerous algorithms and methods to find out negative and positive association rules. From the existing approaches, the frequent pattern growth (FP-Growth) approach is well-organized and capable method for finding the item sets which are frequent, without the generation of candidate item sets. The drawback of FP-Growth is it discovers a huge amount of conditional FP-Tree. We propose a novel, improved FP-Tree for extracting negative association rules without generating conditional FP-Tree.\",\"PeriodicalId\":6860,\"journal\":{\"name\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"volume\":\"9 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCT2.2014.7066748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCT2.2014.7066748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mining of negative association rules using improved frequent pattern tree
Extraction of interesting negative association rules from large data sets is measured as a key feature of data mining. Many researchers discovered numerous algorithms and methods to find out negative and positive association rules. From the existing approaches, the frequent pattern growth (FP-Growth) approach is well-organized and capable method for finding the item sets which are frequent, without the generation of candidate item sets. The drawback of FP-Growth is it discovers a huge amount of conditional FP-Tree. We propose a novel, improved FP-Tree for extracting negative association rules without generating conditional FP-Tree.