利用改进的频繁模式树挖掘负关联规则

E. B. Krishna, B. Rama, A. Nagaraju
{"title":"利用改进的频繁模式树挖掘负关联规则","authors":"E. B. Krishna, B. Rama, A. Nagaraju","doi":"10.1109/ICCCT2.2014.7066748","DOIUrl":null,"url":null,"abstract":"Extraction of interesting negative association rules from large data sets is measured as a key feature of data mining. Many researchers discovered numerous algorithms and methods to find out negative and positive association rules. From the existing approaches, the frequent pattern growth (FP-Growth) approach is well-organized and capable method for finding the item sets which are frequent, without the generation of candidate item sets. The drawback of FP-Growth is it discovers a huge amount of conditional FP-Tree. We propose a novel, improved FP-Tree for extracting negative association rules without generating conditional FP-Tree.","PeriodicalId":6860,"journal":{"name":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","volume":"9 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Mining of negative association rules using improved frequent pattern tree\",\"authors\":\"E. B. Krishna, B. Rama, A. Nagaraju\",\"doi\":\"10.1109/ICCCT2.2014.7066748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extraction of interesting negative association rules from large data sets is measured as a key feature of data mining. Many researchers discovered numerous algorithms and methods to find out negative and positive association rules. From the existing approaches, the frequent pattern growth (FP-Growth) approach is well-organized and capable method for finding the item sets which are frequent, without the generation of candidate item sets. The drawback of FP-Growth is it discovers a huge amount of conditional FP-Tree. We propose a novel, improved FP-Tree for extracting negative association rules without generating conditional FP-Tree.\",\"PeriodicalId\":6860,\"journal\":{\"name\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"volume\":\"9 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCT2.2014.7066748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCT2.2014.7066748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

从大型数据集中提取有趣的负关联规则是数据挖掘的一个关键特征。许多研究人员发现了许多算法和方法来发现负关联规则和正关联规则。从现有的方法来看,频繁模式增长(FP-Growth)方法是一种组织良好、功能强大的方法,可以在不生成候选项目集的情况下找到频繁的项目集。FP-Growth的缺点是发现了大量的条件FP-Tree。我们提出了一种新的,改进的FP-Tree来提取负关联规则,而不生成条件FP-Tree。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mining of negative association rules using improved frequent pattern tree
Extraction of interesting negative association rules from large data sets is measured as a key feature of data mining. Many researchers discovered numerous algorithms and methods to find out negative and positive association rules. From the existing approaches, the frequent pattern growth (FP-Growth) approach is well-organized and capable method for finding the item sets which are frequent, without the generation of candidate item sets. The drawback of FP-Growth is it discovers a huge amount of conditional FP-Tree. We propose a novel, improved FP-Tree for extracting negative association rules without generating conditional FP-Tree.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Image Watermarking Scheme Using LU Decomposition Streaming Algorithm for Submodular Cover Problem Under Noise Hand part segmentations in hand mask of egocentric images using Distance Transformation Map and SVM Classifier Multiple Imputation by Generative Adversarial Networks for Classification with Incomplete Data MC-OCR Challenge 2021: Simple approach for receipt information extraction and quality evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1