可分离二元函数的性质研究

IF 3.2 3区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Grey Systems-Theory and Application Pub Date : 2023-07-14 DOI:10.1108/gs-11-2022-0109
Zhi Cheng Jiang, Yong Wei
{"title":"可分离二元函数的性质研究","authors":"Zhi Cheng Jiang, Yong Wei","doi":"10.1108/gs-11-2022-0109","DOIUrl":null,"url":null,"abstract":"PurposeAccording to the fact that the single function transformation which can both reduce the class ratio dispersion and keep the relative error no enlargement after the inverse transformation does not exist, this paper provides the separable binary function transformation F(x(k),k)=f(x(k))⋅g(k). The authors select the appropriate f(x(k)) and g(k) to get F(x(k),k)=f(x(k))⋅g(k). The sequence {F(x(k),k)}k=1n can not only improve the modeling accuracy but also ensure that the inverse transformation relative error has no enlargement.Design/methodology/approachFirst of all, to meet that the sequence reduces the class ratio dispersion after binary function transformation, the sufficient and necessary condition of binary function transformation with reduced class ratio dispersion is obtained. Secondly, to meet the condition that the inverse transformation relative error is not enlarged, the necessary condition of separable binary function transformation is obtained respectively for monotonically increasing and monotonically decreasing function f(x). Finally, the feasibility and correctness of this method are illustrated by example analysis and application.FindingsThe sufficient and necessary condition of binary function transformation with reduced class ratio dispersion and the necessary condition of separable binary function transformation with the inverse transformation relative error no enlargement.Practical implicationsAccording to the properties of separable binary function transformation provided in this paper, the grey prediction function model is established, which can improve the modeling accuracy.Originality/valueThis paper provides a binary function transformation, and researches the sufficient and necessary condition of binary function transformation with reduced class ratio dispersion and the necessary condition of separable binary function transformation with the inverse transformation relative error no enlargement. It is easy for scholars to carry out the pretest before selecting the separable binary function transformation. The binary function transformation is the further extension of single function transformation, which broadens and enriches the choice of function transformation.","PeriodicalId":48597,"journal":{"name":"Grey Systems-Theory and Application","volume":"57 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the properties of separable binary functions\",\"authors\":\"Zhi Cheng Jiang, Yong Wei\",\"doi\":\"10.1108/gs-11-2022-0109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeAccording to the fact that the single function transformation which can both reduce the class ratio dispersion and keep the relative error no enlargement after the inverse transformation does not exist, this paper provides the separable binary function transformation F(x(k),k)=f(x(k))⋅g(k). The authors select the appropriate f(x(k)) and g(k) to get F(x(k),k)=f(x(k))⋅g(k). The sequence {F(x(k),k)}k=1n can not only improve the modeling accuracy but also ensure that the inverse transformation relative error has no enlargement.Design/methodology/approachFirst of all, to meet that the sequence reduces the class ratio dispersion after binary function transformation, the sufficient and necessary condition of binary function transformation with reduced class ratio dispersion is obtained. Secondly, to meet the condition that the inverse transformation relative error is not enlarged, the necessary condition of separable binary function transformation is obtained respectively for monotonically increasing and monotonically decreasing function f(x). Finally, the feasibility and correctness of this method are illustrated by example analysis and application.FindingsThe sufficient and necessary condition of binary function transformation with reduced class ratio dispersion and the necessary condition of separable binary function transformation with the inverse transformation relative error no enlargement.Practical implicationsAccording to the properties of separable binary function transformation provided in this paper, the grey prediction function model is established, which can improve the modeling accuracy.Originality/valueThis paper provides a binary function transformation, and researches the sufficient and necessary condition of binary function transformation with reduced class ratio dispersion and the necessary condition of separable binary function transformation with the inverse transformation relative error no enlargement. It is easy for scholars to carry out the pretest before selecting the separable binary function transformation. The binary function transformation is the further extension of single function transformation, which broadens and enriches the choice of function transformation.\",\"PeriodicalId\":48597,\"journal\":{\"name\":\"Grey Systems-Theory and Application\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Grey Systems-Theory and Application\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/gs-11-2022-0109\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Grey Systems-Theory and Application","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/gs-11-2022-0109","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

目的根据单函数变换不存在既能减小类比色散又能保持逆变换后相对误差不扩大的事实,给出了可分离二元函数变换F(x(k),k)= F(x(k))⋅g(k)。作者选取适当的f(x(k))和g(k)得到f(x(k),k)=f(x(k))·g(k)。序列{F(x(k),k)}k=1n既能提高建模精度,又能保证逆变换相对误差不增大。设计/方法/途径首先,为了满足序列在二值函数变换后减小了类比弥散,得到了二值函数变换减小类比弥散的充要条件。其次,为满足逆变换相对误差不增大的条件,分别得到了单调递增函数f(x)和单调递减函数f(x)可分离二元函数变换的必要条件;最后,通过实例分析和应用说明了该方法的可行性和正确性。发现类比色散减小的二元函数变换的充要条件和逆变换相对误差不增大的可分离二元函数变换的必要条件。实际意义根据本文提供的可分离二元函数变换的性质,建立了灰色预测函数模型,提高了建模精度。本文提供了一种二元函数变换,研究了类比弥散减小的二元函数变换的充要条件和逆变换相对误差不增大的可分离二元函数变换的充要条件。在选择可分离二元函数变换之前,学者们很容易进行预检验。二元函数变换是对单函数变换的进一步扩展,拓宽和丰富了函数变换的选择范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on the properties of separable binary functions
PurposeAccording to the fact that the single function transformation which can both reduce the class ratio dispersion and keep the relative error no enlargement after the inverse transformation does not exist, this paper provides the separable binary function transformation F(x(k),k)=f(x(k))⋅g(k). The authors select the appropriate f(x(k)) and g(k) to get F(x(k),k)=f(x(k))⋅g(k). The sequence {F(x(k),k)}k=1n can not only improve the modeling accuracy but also ensure that the inverse transformation relative error has no enlargement.Design/methodology/approachFirst of all, to meet that the sequence reduces the class ratio dispersion after binary function transformation, the sufficient and necessary condition of binary function transformation with reduced class ratio dispersion is obtained. Secondly, to meet the condition that the inverse transformation relative error is not enlarged, the necessary condition of separable binary function transformation is obtained respectively for monotonically increasing and monotonically decreasing function f(x). Finally, the feasibility and correctness of this method are illustrated by example analysis and application.FindingsThe sufficient and necessary condition of binary function transformation with reduced class ratio dispersion and the necessary condition of separable binary function transformation with the inverse transformation relative error no enlargement.Practical implicationsAccording to the properties of separable binary function transformation provided in this paper, the grey prediction function model is established, which can improve the modeling accuracy.Originality/valueThis paper provides a binary function transformation, and researches the sufficient and necessary condition of binary function transformation with reduced class ratio dispersion and the necessary condition of separable binary function transformation with the inverse transformation relative error no enlargement. It is easy for scholars to carry out the pretest before selecting the separable binary function transformation. The binary function transformation is the further extension of single function transformation, which broadens and enriches the choice of function transformation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Grey Systems-Theory and Application
Grey Systems-Theory and Application MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
4.80
自引率
13.80%
发文量
22
期刊最新文献
Forecasting short-term energy consumption in Chongqing using a novel grey Bernoulli model Construction and application of a novel grey relational analysis model considering factor coupling relationship A directed grey incidence model based on panel data A grey target performance evaluation model for aeroengine pressure test bench Grey relations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1