脑核磁共振成像分割的一种新的混合方法

Mohamed Zaki Abderrezak, Mouatez billah Chibane, K. Mansour
{"title":"脑核磁共振成像分割的一种新的混合方法","authors":"Mohamed Zaki Abderrezak, Mouatez billah Chibane, K. Mansour","doi":"10.5121/SIPIJ.2014.5408","DOIUrl":null,"url":null,"abstract":"The magnetic resonance imaging is a method which has undeniable qualities of contrast and tissue characterization, presenting an interest in the follow-up of various pathologies such as the multiple sclerosis. In this work, a new method of hybrid segmentation is presented and applied to Brain MRIs. The extraction of the image of the brain is pretreated with the Non Local Means filter. A theoretical approach is proposed; finally the last section is organized around an experimental part allowing the study of the behavior of our model on textured images. In the aim to validate our model, different segmentations were down on pathological Brain MRI, the obtained results have been compared to the results obtained by another models. This results show the effectiveness and the robustness of the suggested approach.","PeriodicalId":90726,"journal":{"name":"Signal and image processing : an international journal","volume":"53 1","pages":"77-84"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A New Hybrid Method for the Segmentation of the Brain MRIS\",\"authors\":\"Mohamed Zaki Abderrezak, Mouatez billah Chibane, K. Mansour\",\"doi\":\"10.5121/SIPIJ.2014.5408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The magnetic resonance imaging is a method which has undeniable qualities of contrast and tissue characterization, presenting an interest in the follow-up of various pathologies such as the multiple sclerosis. In this work, a new method of hybrid segmentation is presented and applied to Brain MRIs. The extraction of the image of the brain is pretreated with the Non Local Means filter. A theoretical approach is proposed; finally the last section is organized around an experimental part allowing the study of the behavior of our model on textured images. In the aim to validate our model, different segmentations were down on pathological Brain MRI, the obtained results have been compared to the results obtained by another models. This results show the effectiveness and the robustness of the suggested approach.\",\"PeriodicalId\":90726,\"journal\":{\"name\":\"Signal and image processing : an international journal\",\"volume\":\"53 1\",\"pages\":\"77-84\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal and image processing : an international journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/SIPIJ.2014.5408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal and image processing : an international journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/SIPIJ.2014.5408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

磁共振成像是一种具有不可否认的对比和组织特征的方法,在多发性硬化症等各种病理的随访中表现出兴趣。本文提出了一种新的混合分割方法,并将其应用于脑核磁共振成像。对提取的脑图像进行非局部均值滤波预处理。提出了一种理论方法;最后,最后一节围绕实验部分进行组织,允许研究我们的模型在纹理图像上的行为。为了验证我们的模型,在病理脑MRI上进行了不同的分割,并将所得结果与其他模型所得结果进行了比较。结果表明了该方法的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Hybrid Method for the Segmentation of the Brain MRIS
The magnetic resonance imaging is a method which has undeniable qualities of contrast and tissue characterization, presenting an interest in the follow-up of various pathologies such as the multiple sclerosis. In this work, a new method of hybrid segmentation is presented and applied to Brain MRIs. The extraction of the image of the brain is pretreated with the Non Local Means filter. A theoretical approach is proposed; finally the last section is organized around an experimental part allowing the study of the behavior of our model on textured images. In the aim to validate our model, different segmentations were down on pathological Brain MRI, the obtained results have been compared to the results obtained by another models. This results show the effectiveness and the robustness of the suggested approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Omni-Modeler: Rapid Adaptive Visual Recognition with Dynamic Learning A Comparative Study of Machine Learning Algorithms for EEG Signal Classification Combining of Narrative News and VR Games: Comparison of Various Forms of News Games Mixed Spectra for Stable Signals from Discrete Observations Fractional Order Butterworth Filter for Fetal Electrocardiographic Signal Feature Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1