Mohamed Zaki Abderrezak, Mouatez billah Chibane, K. Mansour
{"title":"脑核磁共振成像分割的一种新的混合方法","authors":"Mohamed Zaki Abderrezak, Mouatez billah Chibane, K. Mansour","doi":"10.5121/SIPIJ.2014.5408","DOIUrl":null,"url":null,"abstract":"The magnetic resonance imaging is a method which has undeniable qualities of contrast and tissue characterization, presenting an interest in the follow-up of various pathologies such as the multiple sclerosis. In this work, a new method of hybrid segmentation is presented and applied to Brain MRIs. The extraction of the image of the brain is pretreated with the Non Local Means filter. A theoretical approach is proposed; finally the last section is organized around an experimental part allowing the study of the behavior of our model on textured images. In the aim to validate our model, different segmentations were down on pathological Brain MRI, the obtained results have been compared to the results obtained by another models. This results show the effectiveness and the robustness of the suggested approach.","PeriodicalId":90726,"journal":{"name":"Signal and image processing : an international journal","volume":"53 1","pages":"77-84"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A New Hybrid Method for the Segmentation of the Brain MRIS\",\"authors\":\"Mohamed Zaki Abderrezak, Mouatez billah Chibane, K. Mansour\",\"doi\":\"10.5121/SIPIJ.2014.5408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The magnetic resonance imaging is a method which has undeniable qualities of contrast and tissue characterization, presenting an interest in the follow-up of various pathologies such as the multiple sclerosis. In this work, a new method of hybrid segmentation is presented and applied to Brain MRIs. The extraction of the image of the brain is pretreated with the Non Local Means filter. A theoretical approach is proposed; finally the last section is organized around an experimental part allowing the study of the behavior of our model on textured images. In the aim to validate our model, different segmentations were down on pathological Brain MRI, the obtained results have been compared to the results obtained by another models. This results show the effectiveness and the robustness of the suggested approach.\",\"PeriodicalId\":90726,\"journal\":{\"name\":\"Signal and image processing : an international journal\",\"volume\":\"53 1\",\"pages\":\"77-84\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal and image processing : an international journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/SIPIJ.2014.5408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal and image processing : an international journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/SIPIJ.2014.5408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A New Hybrid Method for the Segmentation of the Brain MRIS
The magnetic resonance imaging is a method which has undeniable qualities of contrast and tissue characterization, presenting an interest in the follow-up of various pathologies such as the multiple sclerosis. In this work, a new method of hybrid segmentation is presented and applied to Brain MRIs. The extraction of the image of the brain is pretreated with the Non Local Means filter. A theoretical approach is proposed; finally the last section is organized around an experimental part allowing the study of the behavior of our model on textured images. In the aim to validate our model, different segmentations were down on pathological Brain MRI, the obtained results have been compared to the results obtained by another models. This results show the effectiveness and the robustness of the suggested approach.