{"title":"臭椿叶提取物生物合成纳米银及其抗菌活性研究","authors":"G. Arumugam","doi":"10.22377/ijgp.v14i03.2938","DOIUrl":null,"url":null,"abstract":"Objective: The objective of the study was to evaluate the antibacterial activity of silver nanoparticles (AgNP) synthesized from Ailanthus excelsa against human pathogens. Materials and Methods: Ultraviolet-visible (UV-Vis) spectrophotometry and transmission electron microscopy (TEM) were performed to confirm the formation and stability of AgNPs. Antibacterial activities of the synthesized AgNPs were determined using the agar well diffusion assay method. Results: UV-Vis spectrum of the aqueous medium containing AgNPs showed an absorption peak at around 425 nm for the yellow to brown colored AgNPs synthesized from 10 to 3 (M) silver nitrate and the fixed volume fraction (ƒ = 0.2) aqueous leaf extract. TEM showed the formation of AgNPs with a size ranging from 15 to 25 nm. The X-ray diffraction patterns of AgNPs synthesized from leaf extract of A. excelsa clearly illustrates that the AgNPs were synthesized. The formed AgNPs showed good antibacterial activity against human pathogens. Conclusions: A. excelsa plant extract solution is potent for the green and eco-friendly synthesis of silver (Ag) nanoparticles, which provides efficient research applications.","PeriodicalId":14055,"journal":{"name":"International Journal of Green Pharmacy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biosynthesis of silver nanoparticles using Ailanthus excelsa leaf extract and their antibacterial activity\",\"authors\":\"G. Arumugam\",\"doi\":\"10.22377/ijgp.v14i03.2938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: The objective of the study was to evaluate the antibacterial activity of silver nanoparticles (AgNP) synthesized from Ailanthus excelsa against human pathogens. Materials and Methods: Ultraviolet-visible (UV-Vis) spectrophotometry and transmission electron microscopy (TEM) were performed to confirm the formation and stability of AgNPs. Antibacterial activities of the synthesized AgNPs were determined using the agar well diffusion assay method. Results: UV-Vis spectrum of the aqueous medium containing AgNPs showed an absorption peak at around 425 nm for the yellow to brown colored AgNPs synthesized from 10 to 3 (M) silver nitrate and the fixed volume fraction (ƒ = 0.2) aqueous leaf extract. TEM showed the formation of AgNPs with a size ranging from 15 to 25 nm. The X-ray diffraction patterns of AgNPs synthesized from leaf extract of A. excelsa clearly illustrates that the AgNPs were synthesized. The formed AgNPs showed good antibacterial activity against human pathogens. Conclusions: A. excelsa plant extract solution is potent for the green and eco-friendly synthesis of silver (Ag) nanoparticles, which provides efficient research applications.\",\"PeriodicalId\":14055,\"journal\":{\"name\":\"International Journal of Green Pharmacy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Green Pharmacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22377/ijgp.v14i03.2938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Green Pharmacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22377/ijgp.v14i03.2938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biosynthesis of silver nanoparticles using Ailanthus excelsa leaf extract and their antibacterial activity
Objective: The objective of the study was to evaluate the antibacterial activity of silver nanoparticles (AgNP) synthesized from Ailanthus excelsa against human pathogens. Materials and Methods: Ultraviolet-visible (UV-Vis) spectrophotometry and transmission electron microscopy (TEM) were performed to confirm the formation and stability of AgNPs. Antibacterial activities of the synthesized AgNPs were determined using the agar well diffusion assay method. Results: UV-Vis spectrum of the aqueous medium containing AgNPs showed an absorption peak at around 425 nm for the yellow to brown colored AgNPs synthesized from 10 to 3 (M) silver nitrate and the fixed volume fraction (ƒ = 0.2) aqueous leaf extract. TEM showed the formation of AgNPs with a size ranging from 15 to 25 nm. The X-ray diffraction patterns of AgNPs synthesized from leaf extract of A. excelsa clearly illustrates that the AgNPs were synthesized. The formed AgNPs showed good antibacterial activity against human pathogens. Conclusions: A. excelsa plant extract solution is potent for the green and eco-friendly synthesis of silver (Ag) nanoparticles, which provides efficient research applications.