印度东北部东喜马拉雅构造合带翔窗的岩浆活动:凯尔盖伦地幔柱活动的遗迹

A. K. Singh, Govind Oinam, Sun‐Lin Chung, R. Bikramaditya, Hao-Yang Lee, M. Joshi
{"title":"印度东北部东喜马拉雅构造合带翔窗的岩浆活动:凯尔盖伦地幔柱活动的遗迹","authors":"A. K. Singh, Govind Oinam, Sun‐Lin Chung, R. Bikramaditya, Hao-Yang Lee, M. Joshi","doi":"10.1144/SP518-2021-13","DOIUrl":null,"url":null,"abstract":"Abstract We report new U–Pb zircon ages for mafic plutonic (gabbro) and volcanic (andesite) rocks, along with the whole-rock chemistry of a mafic–felsic suite of volcanic rocks from the Siang window of the Eastern Himalayan Syntaxis, NE India. Field relationships, and mineralogical and geochemical characteristics, of the studied mafic–intermediate–felsic rocks suggest their co-magmatic linkage that was generated in an extensional tectonic environment. Incompatible trace elements and low concentrations of large ion lithophile elements (LILEs) and REE behaviour reflect both the enriched nature of the mafic rocks and the limited influence of crustal contamination in their genesis. Partial melting and fractional crystallization processes have played a major role during the genesis of these felsic volcanics from the parental mafic magma. The laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U–Pb ages suggest that the mafic plutonic rock was emplaced at c. 121.18 ± 1 Ma and intermediate volcanic rock was emplaced at c. 135.48 ± 0.50 Ma during the Early Cretaceous period. The new ages are consistent with earlier reported zircon U–Pb ages (133.0 ± 1.9–130.7 ± 1.8 Ma) of felsic volcanic rocks from the present study area. Our new field observations, and mineralogical and geochemical characteristics, in conjunction with the U–Pb isotopic database suggest that the major magmatic event in the core of the Siang window of the Eastern Himalaya is coeval with the Rajmahal–Sylhet–Mikir–Shillong flood basalts of eastern and northeastern India, and the Comei–Bunbury Large Igneous Province of southeastern Tibet and SW Australia. These events are related to the break-up of eastern Gondwana and outbreak of the Kerguelen plume.","PeriodicalId":22055,"journal":{"name":"Special Publications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Magmatism in the Siang window of the Eastern Himalayan Syntaxis, NE India: a vestige of Kerguelen mantle plume activity\",\"authors\":\"A. K. Singh, Govind Oinam, Sun‐Lin Chung, R. Bikramaditya, Hao-Yang Lee, M. Joshi\",\"doi\":\"10.1144/SP518-2021-13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We report new U–Pb zircon ages for mafic plutonic (gabbro) and volcanic (andesite) rocks, along with the whole-rock chemistry of a mafic–felsic suite of volcanic rocks from the Siang window of the Eastern Himalayan Syntaxis, NE India. Field relationships, and mineralogical and geochemical characteristics, of the studied mafic–intermediate–felsic rocks suggest their co-magmatic linkage that was generated in an extensional tectonic environment. Incompatible trace elements and low concentrations of large ion lithophile elements (LILEs) and REE behaviour reflect both the enriched nature of the mafic rocks and the limited influence of crustal contamination in their genesis. Partial melting and fractional crystallization processes have played a major role during the genesis of these felsic volcanics from the parental mafic magma. The laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U–Pb ages suggest that the mafic plutonic rock was emplaced at c. 121.18 ± 1 Ma and intermediate volcanic rock was emplaced at c. 135.48 ± 0.50 Ma during the Early Cretaceous period. The new ages are consistent with earlier reported zircon U–Pb ages (133.0 ± 1.9–130.7 ± 1.8 Ma) of felsic volcanic rocks from the present study area. Our new field observations, and mineralogical and geochemical characteristics, in conjunction with the U–Pb isotopic database suggest that the major magmatic event in the core of the Siang window of the Eastern Himalaya is coeval with the Rajmahal–Sylhet–Mikir–Shillong flood basalts of eastern and northeastern India, and the Comei–Bunbury Large Igneous Province of southeastern Tibet and SW Australia. These events are related to the break-up of eastern Gondwana and outbreak of the Kerguelen plume.\",\"PeriodicalId\":22055,\"journal\":{\"name\":\"Special Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Special Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1144/SP518-2021-13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1144/SP518-2021-13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

摘要本文报道了印度东北部东喜马拉雅构造构造的Siang窗口中基性深生岩(辉长岩)和火山(安山岩)岩石的新的U-Pb锆石年龄,以及一套基性-长英质火山岩的全岩石化学特征。研究区基性-中英质岩石的场关系、矿物学和地球化学特征表明,它们的共岩浆联系是在伸展构造环境下形成的。不相容的微量元素、低浓度的大离子亲石元素(LILEs)和稀土元素行为既反映了基性岩石的富集性质,也反映了地壳污染对其成因的有限影响。这些长英质火山在母基性岩浆形成过程中,部分熔融和部分结晶作用起了主要作用。激光烧蚀电感耦合等离子体质谱(LA-ICP-MS)锆石U-Pb年龄表明,早白垩世基性深成岩侵位在c. 121.18±1 Ma,中间火山岩侵位在c. 135.48±0.50 Ma。新年龄与研究区长英质火山岩锆石U-Pb年龄(133.0±1.9 ~ 130.7±1.8 Ma)一致。新的野外观测、矿物学和地球化学特征以及U-Pb同位素数据库表明,东喜马拉雅Siang窗口核心的主要岩浆事件与印度东部和东北部的rajmahal - sylhet - miir - shillong洪水玄武岩,以及西藏东南部和澳大利亚西南部的Comei-Bunbury大火成岩省是同一时期的。这些事件与冈瓦纳东部的分裂和凯尔盖伦火山柱的爆发有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Magmatism in the Siang window of the Eastern Himalayan Syntaxis, NE India: a vestige of Kerguelen mantle plume activity
Abstract We report new U–Pb zircon ages for mafic plutonic (gabbro) and volcanic (andesite) rocks, along with the whole-rock chemistry of a mafic–felsic suite of volcanic rocks from the Siang window of the Eastern Himalayan Syntaxis, NE India. Field relationships, and mineralogical and geochemical characteristics, of the studied mafic–intermediate–felsic rocks suggest their co-magmatic linkage that was generated in an extensional tectonic environment. Incompatible trace elements and low concentrations of large ion lithophile elements (LILEs) and REE behaviour reflect both the enriched nature of the mafic rocks and the limited influence of crustal contamination in their genesis. Partial melting and fractional crystallization processes have played a major role during the genesis of these felsic volcanics from the parental mafic magma. The laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U–Pb ages suggest that the mafic plutonic rock was emplaced at c. 121.18 ± 1 Ma and intermediate volcanic rock was emplaced at c. 135.48 ± 0.50 Ma during the Early Cretaceous period. The new ages are consistent with earlier reported zircon U–Pb ages (133.0 ± 1.9–130.7 ± 1.8 Ma) of felsic volcanic rocks from the present study area. Our new field observations, and mineralogical and geochemical characteristics, in conjunction with the U–Pb isotopic database suggest that the major magmatic event in the core of the Siang window of the Eastern Himalaya is coeval with the Rajmahal–Sylhet–Mikir–Shillong flood basalts of eastern and northeastern India, and the Comei–Bunbury Large Igneous Province of southeastern Tibet and SW Australia. These events are related to the break-up of eastern Gondwana and outbreak of the Kerguelen plume.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Meta‐Attributes and Artificial Networking About this title - The Carboniferous Timescale About this title - Large Igneous Provinces and their Plumbing Systems About this title - Lamprophyres, Lamproites and Related Rocks: Tracers to Supercontinent Cycles and Metallogenesis The Carboniferous timescale: an introduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1