Ravisankar Venugopal, N. Muthusamy, Balasundaram Natarajan, Venkatesan Govindan
{"title":"基于中心复合设计的再生塑料骨料纤维增强聚合物混凝土的统计优化","authors":"Ravisankar Venugopal, N. Muthusamy, Balasundaram Natarajan, Venkatesan Govindan","doi":"10.1590/1517-7076-rmat-2023-0182","DOIUrl":null,"url":null,"abstract":"To meet the present needs of concrete consumption, it is the need of the hour to discover different alterna - tives and unique techniques. By Incorporating the latest trends, Polymer Concrete (PC) and Fibre-Reinforced Concrete (FRC) are being used to improve the strength of concrete. It is proposed to produce M30 grade Fibre Reinforced Polymer Concrete (FRPC) with the help of Polyester Resins (PR), Polypropylene Fibres (PF) and Recycled Waste Plastics (RWPA). FRPC is a combination of three different variables of different replacement percentages, which requires extensive and detailed experimentation to optimize each variable used in this investigation. In this study (research), optimization was done by keeping the two variables constant. To reduce the number of experiments, optimization of ingredients was done by statistical modelling technique of Central Composite Design (CCD). In conclusion, the optimal input parameters for achieving a 28-day CS are determined to be 12.05% PR, 2.19% PF, and 30% RWPA. These findings are based on the analysis of experimental results, statistical modelling, and the CCD approach, demonstrating the successful optimization and correlation between the input parameters and the desired CS output.","PeriodicalId":18246,"journal":{"name":"Matéria (Rio de Janeiro)","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical optimization of fibre reinforced polymer concrete made with recycled plastic aggregates by central composite design\",\"authors\":\"Ravisankar Venugopal, N. Muthusamy, Balasundaram Natarajan, Venkatesan Govindan\",\"doi\":\"10.1590/1517-7076-rmat-2023-0182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To meet the present needs of concrete consumption, it is the need of the hour to discover different alterna - tives and unique techniques. By Incorporating the latest trends, Polymer Concrete (PC) and Fibre-Reinforced Concrete (FRC) are being used to improve the strength of concrete. It is proposed to produce M30 grade Fibre Reinforced Polymer Concrete (FRPC) with the help of Polyester Resins (PR), Polypropylene Fibres (PF) and Recycled Waste Plastics (RWPA). FRPC is a combination of three different variables of different replacement percentages, which requires extensive and detailed experimentation to optimize each variable used in this investigation. In this study (research), optimization was done by keeping the two variables constant. To reduce the number of experiments, optimization of ingredients was done by statistical modelling technique of Central Composite Design (CCD). In conclusion, the optimal input parameters for achieving a 28-day CS are determined to be 12.05% PR, 2.19% PF, and 30% RWPA. These findings are based on the analysis of experimental results, statistical modelling, and the CCD approach, demonstrating the successful optimization and correlation between the input parameters and the desired CS output.\",\"PeriodicalId\":18246,\"journal\":{\"name\":\"Matéria (Rio de Janeiro)\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matéria (Rio de Janeiro)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/1517-7076-rmat-2023-0182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matéria (Rio de Janeiro)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/1517-7076-rmat-2023-0182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Statistical optimization of fibre reinforced polymer concrete made with recycled plastic aggregates by central composite design
To meet the present needs of concrete consumption, it is the need of the hour to discover different alterna - tives and unique techniques. By Incorporating the latest trends, Polymer Concrete (PC) and Fibre-Reinforced Concrete (FRC) are being used to improve the strength of concrete. It is proposed to produce M30 grade Fibre Reinforced Polymer Concrete (FRPC) with the help of Polyester Resins (PR), Polypropylene Fibres (PF) and Recycled Waste Plastics (RWPA). FRPC is a combination of three different variables of different replacement percentages, which requires extensive and detailed experimentation to optimize each variable used in this investigation. In this study (research), optimization was done by keeping the two variables constant. To reduce the number of experiments, optimization of ingredients was done by statistical modelling technique of Central Composite Design (CCD). In conclusion, the optimal input parameters for achieving a 28-day CS are determined to be 12.05% PR, 2.19% PF, and 30% RWPA. These findings are based on the analysis of experimental results, statistical modelling, and the CCD approach, demonstrating the successful optimization and correlation between the input parameters and the desired CS output.