{"title":"塔斯马尼亚短喙针鼹种群的人口统计学","authors":"Tamika J. Lunn, S. Nicol, J. Buettel, B. Brook","doi":"10.1071/ZO21037","DOIUrl":null,"url":null,"abstract":"ABSTRACT Deriving estimates of demographic parameters and the processes driving them is crucial for identifying wildlife management options. The short-beaked echidna (Tachyglossus aculeatus) is the most widely distributed native Australian mammal, yet little is known of its population dynamics due to its cryptic nature. Consequently, assessment of the impacts of climate and threats on echidna populations has been difficult. We analyse 19 years (1996–2014) of mark–recapture data to estimate survival and reproductive rates of a Tasmanian population of short-beaked echidna, and to evaluate the influence of regional weather patterns on its demographics. Population size showed high year-to-year variation, ranging from 1 to 40 echidnas km2 across the study area. Known-fate modelling of radio-tracked individuals suggested that climatic conditions impacted survival; average longevity was estimated at 16.7 years but only 4.8 years when the total spring/summer rainfall was below 125 mm, and 6.25 in years when temperatures more frequently exceeded 32°C. Recruitment, estimated from Pradel analyses, was low in the population (β = 0.08) and not significantly affected by climate. These results are the first quantitative estimates of climate effects, survival, and recruitment for this species, and suggest that climate-enhanced drying and temperature increase would pose a threat to echidna populations in Tasmania.","PeriodicalId":55420,"journal":{"name":"Australian Journal of Zoology","volume":"1 1","pages":"80 - 91"},"PeriodicalIF":1.0000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Population demography of the Tasmanian short-beaked echidna (Tachyglossus aculeatus)\",\"authors\":\"Tamika J. Lunn, S. Nicol, J. Buettel, B. Brook\",\"doi\":\"10.1071/ZO21037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Deriving estimates of demographic parameters and the processes driving them is crucial for identifying wildlife management options. The short-beaked echidna (Tachyglossus aculeatus) is the most widely distributed native Australian mammal, yet little is known of its population dynamics due to its cryptic nature. Consequently, assessment of the impacts of climate and threats on echidna populations has been difficult. We analyse 19 years (1996–2014) of mark–recapture data to estimate survival and reproductive rates of a Tasmanian population of short-beaked echidna, and to evaluate the influence of regional weather patterns on its demographics. Population size showed high year-to-year variation, ranging from 1 to 40 echidnas km2 across the study area. Known-fate modelling of radio-tracked individuals suggested that climatic conditions impacted survival; average longevity was estimated at 16.7 years but only 4.8 years when the total spring/summer rainfall was below 125 mm, and 6.25 in years when temperatures more frequently exceeded 32°C. Recruitment, estimated from Pradel analyses, was low in the population (β = 0.08) and not significantly affected by climate. These results are the first quantitative estimates of climate effects, survival, and recruitment for this species, and suggest that climate-enhanced drying and temperature increase would pose a threat to echidna populations in Tasmania.\",\"PeriodicalId\":55420,\"journal\":{\"name\":\"Australian Journal of Zoology\",\"volume\":\"1 1\",\"pages\":\"80 - 91\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Journal of Zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1071/ZO21037\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/ZO21037","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ZOOLOGY","Score":null,"Total":0}
Population demography of the Tasmanian short-beaked echidna (Tachyglossus aculeatus)
ABSTRACT Deriving estimates of demographic parameters and the processes driving them is crucial for identifying wildlife management options. The short-beaked echidna (Tachyglossus aculeatus) is the most widely distributed native Australian mammal, yet little is known of its population dynamics due to its cryptic nature. Consequently, assessment of the impacts of climate and threats on echidna populations has been difficult. We analyse 19 years (1996–2014) of mark–recapture data to estimate survival and reproductive rates of a Tasmanian population of short-beaked echidna, and to evaluate the influence of regional weather patterns on its demographics. Population size showed high year-to-year variation, ranging from 1 to 40 echidnas km2 across the study area. Known-fate modelling of radio-tracked individuals suggested that climatic conditions impacted survival; average longevity was estimated at 16.7 years but only 4.8 years when the total spring/summer rainfall was below 125 mm, and 6.25 in years when temperatures more frequently exceeded 32°C. Recruitment, estimated from Pradel analyses, was low in the population (β = 0.08) and not significantly affected by climate. These results are the first quantitative estimates of climate effects, survival, and recruitment for this species, and suggest that climate-enhanced drying and temperature increase would pose a threat to echidna populations in Tasmania.
期刊介绍:
Australian Journal of Zoology is an international journal publishing contributions on evolutionary, molecular and comparative zoology. The journal focuses on Australasian fauna but also includes high-quality research from any region that has broader practical or theoretical relevance or that demonstrates a conceptual advance to any aspect of zoology. Subject areas include, but are not limited to: anatomy, physiology, molecular biology, genetics, reproductive biology, developmental biology, parasitology, morphology, behaviour, ecology, zoogeography, systematics and evolution.
Australian Journal of Zoology is a valuable resource for professional zoologists, research scientists, resource managers, environmental consultants, students and amateurs interested in any aspect of the scientific study of animals.
Australian Journal of Zoology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.