基于化学计量学和优化方法的电子鼻和电子眼系统在橄榄油掺假检测中的应用

Seyedeh Mahsa Mirhoseini-Moghaddam, Mohammad Reza Yamaghani, A. Bakhshipour
{"title":"基于化学计量学和优化方法的电子鼻和电子眼系统在橄榄油掺假检测中的应用","authors":"Seyedeh Mahsa Mirhoseini-Moghaddam, Mohammad Reza Yamaghani, A. Bakhshipour","doi":"10.3897/jucs.90346","DOIUrl":null,"url":null,"abstract":"In this study, a combined system of electronic nose (e-nose) and computer vision was developed for the detection of adulteration in extra virgin olive oil (EVOO). The canola oil was blended with the pure EVOO to provide adulterations at four levels of 5, 10, 15, and 20%. Data collection was carried out using an e-nose system containing 13 metal oxide gas sensors, and a computer vision system. Applying principal component analysis (PCA) on the e-nose-extracted features showed that 93% and 92% of total data variance was covered by the three first PCs generated from Maximum Sensor Response (MSR), Area Under Curve (AUC) features, respectively. Cluster analysis verified that the pure and impure EVOO samples can be categorized by e-nose properties. PCA-Quadratic Discriminant Analysis (PCA-QDA) classified the EVOOs with an accuracy of 100%. Multiple Linear Regression (MLR) was able to estimate the adulteration percentage with the R2 of 0.8565 and RMSE of 2.7125 on the validation dataset. Moreover, factor analysis using Partial Least Square (PLS) introduced the MQ3 and TGS2620 sensors as the most important e-nose sensors for EVOO adulteration monitoring. Application of Response Surface Methodology (RSM) on RGB, HSV, L*,a*, and b* as color parameters of the EVOO images revealed that the color parameters are at their optimal state in the case up to 0.1% of canola impurity, where the obtained desirability index was 97%. Results of this study demonstrated the high capability of e-nose and computer vision systems for accurate, fast and non-destructive detection of adulteration in EVOO and detection of food adulteration may be more reliable using these artificial senses. ","PeriodicalId":14652,"journal":{"name":"J. Univers. Comput. Sci.","volume":"1 1","pages":"300-325"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Electronic Nose and Eye Systems for Detection of Adulteration in Olive Oil based on Chemometrics and Optimization Approaches\",\"authors\":\"Seyedeh Mahsa Mirhoseini-Moghaddam, Mohammad Reza Yamaghani, A. Bakhshipour\",\"doi\":\"10.3897/jucs.90346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a combined system of electronic nose (e-nose) and computer vision was developed for the detection of adulteration in extra virgin olive oil (EVOO). The canola oil was blended with the pure EVOO to provide adulterations at four levels of 5, 10, 15, and 20%. Data collection was carried out using an e-nose system containing 13 metal oxide gas sensors, and a computer vision system. Applying principal component analysis (PCA) on the e-nose-extracted features showed that 93% and 92% of total data variance was covered by the three first PCs generated from Maximum Sensor Response (MSR), Area Under Curve (AUC) features, respectively. Cluster analysis verified that the pure and impure EVOO samples can be categorized by e-nose properties. PCA-Quadratic Discriminant Analysis (PCA-QDA) classified the EVOOs with an accuracy of 100%. Multiple Linear Regression (MLR) was able to estimate the adulteration percentage with the R2 of 0.8565 and RMSE of 2.7125 on the validation dataset. Moreover, factor analysis using Partial Least Square (PLS) introduced the MQ3 and TGS2620 sensors as the most important e-nose sensors for EVOO adulteration monitoring. Application of Response Surface Methodology (RSM) on RGB, HSV, L*,a*, and b* as color parameters of the EVOO images revealed that the color parameters are at their optimal state in the case up to 0.1% of canola impurity, where the obtained desirability index was 97%. Results of this study demonstrated the high capability of e-nose and computer vision systems for accurate, fast and non-destructive detection of adulteration in EVOO and detection of food adulteration may be more reliable using these artificial senses. \",\"PeriodicalId\":14652,\"journal\":{\"name\":\"J. Univers. Comput. Sci.\",\"volume\":\"1 1\",\"pages\":\"300-325\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Univers. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3897/jucs.90346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Univers. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3897/jucs.90346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,开发了一种电子鼻和计算机视觉相结合的系统,用于检测特级初榨橄榄油(EVOO)中的掺假。将菜籽油与纯EVOO混合,以提供5%、10%、15%和20%四个级别的掺假。数据收集使用了一个电子鼻系统,其中包含13个金属氧化物气体传感器和一个计算机视觉系统。应用主成分分析(PCA)对e-nose提取的特征进行分析,结果表明,由最大传感器响应(MSR)和曲线下面积(AUC)特征产生的前三个pc分别覆盖了93%和92%的总数据方差。聚类分析验证了纯和不纯EVOO样品可以通过电子鼻特性进行分类。pca -二次判别分析(PCA-QDA)对evoo的分类准确率为100%。多元线性回归(MLR)能够在验证数据集上估计掺假百分比,R2为0.8565,RMSE为2.7125。此外,利用偏最小二乘法(PLS)进行因子分析,将MQ3和TGS2620传感器作为EVOO掺假监测中最重要的电子鼻传感器。应用响应面法(RSM)对EVOO图像的RGB、HSV、L*、a*和b*作为颜色参数进行分析,结果表明,当油菜籽杂质含量为0.1%时,颜色参数处于最佳状态,获得的理想指数为97%。本研究结果表明,电子鼻和计算机视觉系统能够准确、快速、无损地检测EVOO中的掺假,使用这些人工感官检测食品掺假可能更可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of Electronic Nose and Eye Systems for Detection of Adulteration in Olive Oil based on Chemometrics and Optimization Approaches
In this study, a combined system of electronic nose (e-nose) and computer vision was developed for the detection of adulteration in extra virgin olive oil (EVOO). The canola oil was blended with the pure EVOO to provide adulterations at four levels of 5, 10, 15, and 20%. Data collection was carried out using an e-nose system containing 13 metal oxide gas sensors, and a computer vision system. Applying principal component analysis (PCA) on the e-nose-extracted features showed that 93% and 92% of total data variance was covered by the three first PCs generated from Maximum Sensor Response (MSR), Area Under Curve (AUC) features, respectively. Cluster analysis verified that the pure and impure EVOO samples can be categorized by e-nose properties. PCA-Quadratic Discriminant Analysis (PCA-QDA) classified the EVOOs with an accuracy of 100%. Multiple Linear Regression (MLR) was able to estimate the adulteration percentage with the R2 of 0.8565 and RMSE of 2.7125 on the validation dataset. Moreover, factor analysis using Partial Least Square (PLS) introduced the MQ3 and TGS2620 sensors as the most important e-nose sensors for EVOO adulteration monitoring. Application of Response Surface Methodology (RSM) on RGB, HSV, L*,a*, and b* as color parameters of the EVOO images revealed that the color parameters are at their optimal state in the case up to 0.1% of canola impurity, where the obtained desirability index was 97%. Results of this study demonstrated the high capability of e-nose and computer vision systems for accurate, fast and non-destructive detection of adulteration in EVOO and detection of food adulteration may be more reliable using these artificial senses. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sentiment Analysis of Code-Mixed Text: A Comprehensive Review Mobile Handoff with 6LoWPAN Neighbour Discovery Auxiliary Communication A Proposal of Naturalistic Software Development Method Recommendation of Machine Learning Techniques for Software Effort Estimation using Multi-Criteria Decision Making Transfer Learning with EfficientNetV2S for Automatic Face Shape Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1