{"title":"照亮分子间的交流","authors":"Bhuvana Krishnaswamy, Megan N. McClean","doi":"10.1145/3411295.3411307","DOIUrl":null,"url":null,"abstract":"Molecules and combinations of molecules are the natural communication currency of microbes; microbes have evolved and been engineered to sense a variety of compounds, often with exquisite sensitivity. The availability of microbial biosensors, combined with the ability to genetically engineer biological circuits to process information, make microbes attractive bionanomachines for propagating information through molecular communication (MC) networks. However, MC networks built entirely of biological components suffer a number of limitations. They are extremely slow due to processing and propagation delays and must employ simple algorithms due to the still limited computational capabilities of biological circuits. In this work, we propose a hybrid bio-electronic framework which utilizes biological components for sensing but offloads processing and computation to traditional electronic systems and communication infrastructure. This is achieved by using tools from the burgeoning field of optogenetics to trigger biosensing through an optoelectronic interface, alleviating the need for computation and communication in the biological domain.","PeriodicalId":93611,"journal":{"name":"Proceedings of the 7th ACM International Conference on Nanoscale Computing and Communication : Virtual Conference, September 23-25, 2020 : NanoCom 2020. ACM International Conference on Nanoscale Computing and Communication (7th : 2020 :...","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Shining light on molecular communication\",\"authors\":\"Bhuvana Krishnaswamy, Megan N. McClean\",\"doi\":\"10.1145/3411295.3411307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Molecules and combinations of molecules are the natural communication currency of microbes; microbes have evolved and been engineered to sense a variety of compounds, often with exquisite sensitivity. The availability of microbial biosensors, combined with the ability to genetically engineer biological circuits to process information, make microbes attractive bionanomachines for propagating information through molecular communication (MC) networks. However, MC networks built entirely of biological components suffer a number of limitations. They are extremely slow due to processing and propagation delays and must employ simple algorithms due to the still limited computational capabilities of biological circuits. In this work, we propose a hybrid bio-electronic framework which utilizes biological components for sensing but offloads processing and computation to traditional electronic systems and communication infrastructure. This is achieved by using tools from the burgeoning field of optogenetics to trigger biosensing through an optoelectronic interface, alleviating the need for computation and communication in the biological domain.\",\"PeriodicalId\":93611,\"journal\":{\"name\":\"Proceedings of the 7th ACM International Conference on Nanoscale Computing and Communication : Virtual Conference, September 23-25, 2020 : NanoCom 2020. ACM International Conference on Nanoscale Computing and Communication (7th : 2020 :...\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th ACM International Conference on Nanoscale Computing and Communication : Virtual Conference, September 23-25, 2020 : NanoCom 2020. ACM International Conference on Nanoscale Computing and Communication (7th : 2020 :...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3411295.3411307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th ACM International Conference on Nanoscale Computing and Communication : Virtual Conference, September 23-25, 2020 : NanoCom 2020. ACM International Conference on Nanoscale Computing and Communication (7th : 2020 :...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3411295.3411307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Molecules and combinations of molecules are the natural communication currency of microbes; microbes have evolved and been engineered to sense a variety of compounds, often with exquisite sensitivity. The availability of microbial biosensors, combined with the ability to genetically engineer biological circuits to process information, make microbes attractive bionanomachines for propagating information through molecular communication (MC) networks. However, MC networks built entirely of biological components suffer a number of limitations. They are extremely slow due to processing and propagation delays and must employ simple algorithms due to the still limited computational capabilities of biological circuits. In this work, we propose a hybrid bio-electronic framework which utilizes biological components for sensing but offloads processing and computation to traditional electronic systems and communication infrastructure. This is achieved by using tools from the burgeoning field of optogenetics to trigger biosensing through an optoelectronic interface, alleviating the need for computation and communication in the biological domain.