{"title":"熔模铸造Ni50Ti50形状记忆合金阳极氧化层的特性","authors":"S. El-Hadad, K. Ibrahim, L. Wagner","doi":"10.1155/2014/346328","DOIUrl":null,"url":null,"abstract":"NiTi shape memory alloys are promising implant materials due to their shape memory effect and super elasticity. In the current study, some Ni50Ti50 (mass %) SMAs samples were prepared by investment casting. These samples were then anodized and thermally treated to improve the surface properties. A fully saturated oxide layer was obtained. The structure and hardness properties of the anodized surfaces were then investigated. A hard porous layer with no free Ni atoms could be obtained which can be used as prebiomimetic surface for biological application.","PeriodicalId":16342,"journal":{"name":"Journal of Metallurgy","volume":"85 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Characteristics of Anodized Layer in Investment Cast Ni50Ti50 Shape Memory Alloy\",\"authors\":\"S. El-Hadad, K. Ibrahim, L. Wagner\",\"doi\":\"10.1155/2014/346328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"NiTi shape memory alloys are promising implant materials due to their shape memory effect and super elasticity. In the current study, some Ni50Ti50 (mass %) SMAs samples were prepared by investment casting. These samples were then anodized and thermally treated to improve the surface properties. A fully saturated oxide layer was obtained. The structure and hardness properties of the anodized surfaces were then investigated. A hard porous layer with no free Ni atoms could be obtained which can be used as prebiomimetic surface for biological application.\",\"PeriodicalId\":16342,\"journal\":{\"name\":\"Journal of Metallurgy\",\"volume\":\"85 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Metallurgy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2014/346328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/346328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Characteristics of Anodized Layer in Investment Cast Ni50Ti50 Shape Memory Alloy
NiTi shape memory alloys are promising implant materials due to their shape memory effect and super elasticity. In the current study, some Ni50Ti50 (mass %) SMAs samples were prepared by investment casting. These samples were then anodized and thermally treated to improve the surface properties. A fully saturated oxide layer was obtained. The structure and hardness properties of the anodized surfaces were then investigated. A hard porous layer with no free Ni atoms could be obtained which can be used as prebiomimetic surface for biological application.