蛇果(Salacca zalacca (Gaert.))的化学成分果皮和硅抗衰老分析

Ermi Girsang, I. Lister, C. Ginting, A. Khu, Butter Samin, W. Widowati, S. Wibowo, R. Rizal
{"title":"蛇果(Salacca zalacca (Gaert.))的化学成分果皮和硅抗衰老分析","authors":"Ermi Girsang, I. Lister, C. Ginting, A. Khu, Butter Samin, W. Widowati, S. Wibowo, R. Rizal","doi":"10.21705/mcbs.v3i2.80","DOIUrl":null,"url":null,"abstract":"Background: Skin aging is a condition where skin is unable to retain both its physiological and structural integrity. Plants is the main source of phtytochemicals compound with wide range of biological activities. Through the efforts of ongoing scientific researches, an increasing number of plant extracts and phytochemicals have been showed promising result as anti-aging agent. Snake fruit (Salacca zalacca (Gaert.) Voss) is tropical plant belongs to the palm tree family (Arecaceae) that served as important crop in Indonesia. Despite its utilization, the phytochemical compound available in snake fruit, especially its peel have not been well documented. Present study aimed to elucidate the phytochemical constituent of snake fruit peel and its anti-aging potency.Materials and Methods: Snake fruit peel extract (SPE) was subjected to qualitative phytochemical assay, high performance liquid chromatography, and molecular docking towards protein related in skin aging.Results: The screening showed SPE contained phytochemical compound belong to flavonoid, tannin, phenol, triterpenoid, saponin and alkaloid. Thus, based on the analysis only chlorogenic acid was present in SPE whilst rutin and caffeic acid were not detected. The SPE was contained chlorogenic acid around 1.074 mg/g dry weight. Chlorogenic acid had the high binding affinity towards matrix metalloproteinase (MMP)-1 (-9.4 kcal/mol).Conclusion: Current findings may provide scientific evidence for possible usage of SPE and its compounds as antioxidant and anti-aging agent.Keywords: Salacca zalacca, phytochemical compound, high performance liquid chromatography, anti-aging","PeriodicalId":53387,"journal":{"name":"MCBS Molecular and Cellular Biomedical Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Chemical Constituents of Snake Fruit (Salacca zalacca (Gaert.) Voss) Peel and in silico Anti-aging Analysis\",\"authors\":\"Ermi Girsang, I. Lister, C. Ginting, A. Khu, Butter Samin, W. Widowati, S. Wibowo, R. Rizal\",\"doi\":\"10.21705/mcbs.v3i2.80\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Skin aging is a condition where skin is unable to retain both its physiological and structural integrity. Plants is the main source of phtytochemicals compound with wide range of biological activities. Through the efforts of ongoing scientific researches, an increasing number of plant extracts and phytochemicals have been showed promising result as anti-aging agent. Snake fruit (Salacca zalacca (Gaert.) Voss) is tropical plant belongs to the palm tree family (Arecaceae) that served as important crop in Indonesia. Despite its utilization, the phytochemical compound available in snake fruit, especially its peel have not been well documented. Present study aimed to elucidate the phytochemical constituent of snake fruit peel and its anti-aging potency.Materials and Methods: Snake fruit peel extract (SPE) was subjected to qualitative phytochemical assay, high performance liquid chromatography, and molecular docking towards protein related in skin aging.Results: The screening showed SPE contained phytochemical compound belong to flavonoid, tannin, phenol, triterpenoid, saponin and alkaloid. Thus, based on the analysis only chlorogenic acid was present in SPE whilst rutin and caffeic acid were not detected. The SPE was contained chlorogenic acid around 1.074 mg/g dry weight. Chlorogenic acid had the high binding affinity towards matrix metalloproteinase (MMP)-1 (-9.4 kcal/mol).Conclusion: Current findings may provide scientific evidence for possible usage of SPE and its compounds as antioxidant and anti-aging agent.Keywords: Salacca zalacca, phytochemical compound, high performance liquid chromatography, anti-aging\",\"PeriodicalId\":53387,\"journal\":{\"name\":\"MCBS Molecular and Cellular Biomedical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MCBS Molecular and Cellular Biomedical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21705/mcbs.v3i2.80\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MCBS Molecular and Cellular Biomedical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21705/mcbs.v3i2.80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

背景:皮肤老化是皮肤无法保持其生理和结构完整性的一种状况。植物是植物化学化合物的主要来源,具有广泛的生物活性。随着科学研究的不断深入,越来越多的植物提取物和植物化学物质在抗衰老方面显示出良好的效果。蛇果(Salacca zalacca)是一种热带植物,属于棕榈科(槟榔科),是印度尼西亚的重要作物。尽管它的利用,植物化学化合物可在蛇果,特别是其果皮尚未得到很好的记录。本研究旨在阐明蛇果皮的植物化学成分及其抗衰老作用。材料与方法:对蛇果皮提取物(SPE)进行定性植物化学分析、高效液相色谱分析和与皮肤衰老相关蛋白的分子对接。结果:经筛选,SPE中含有黄酮类化合物、单宁类化合物、酚类化合物、三萜化合物、皂苷类化合物和生物碱类化合物。因此,固相萃取法只检出绿原酸,而未检出芦丁和咖啡酸。SPE中绿原酸含量约为1.074 mg/g干重。绿原酸对基质金属蛋白酶-1 (-9.4 kcal/mol)具有较高的结合亲和力。结论:本研究结果为SPE及其化合物作为抗氧化剂和抗衰老剂的应用提供了科学依据。关键词:萨拉甲,植物化合物,高效液相色谱,抗衰老
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chemical Constituents of Snake Fruit (Salacca zalacca (Gaert.) Voss) Peel and in silico Anti-aging Analysis
Background: Skin aging is a condition where skin is unable to retain both its physiological and structural integrity. Plants is the main source of phtytochemicals compound with wide range of biological activities. Through the efforts of ongoing scientific researches, an increasing number of plant extracts and phytochemicals have been showed promising result as anti-aging agent. Snake fruit (Salacca zalacca (Gaert.) Voss) is tropical plant belongs to the palm tree family (Arecaceae) that served as important crop in Indonesia. Despite its utilization, the phytochemical compound available in snake fruit, especially its peel have not been well documented. Present study aimed to elucidate the phytochemical constituent of snake fruit peel and its anti-aging potency.Materials and Methods: Snake fruit peel extract (SPE) was subjected to qualitative phytochemical assay, high performance liquid chromatography, and molecular docking towards protein related in skin aging.Results: The screening showed SPE contained phytochemical compound belong to flavonoid, tannin, phenol, triterpenoid, saponin and alkaloid. Thus, based on the analysis only chlorogenic acid was present in SPE whilst rutin and caffeic acid were not detected. The SPE was contained chlorogenic acid around 1.074 mg/g dry weight. Chlorogenic acid had the high binding affinity towards matrix metalloproteinase (MMP)-1 (-9.4 kcal/mol).Conclusion: Current findings may provide scientific evidence for possible usage of SPE and its compounds as antioxidant and anti-aging agent.Keywords: Salacca zalacca, phytochemical compound, high performance liquid chromatography, anti-aging
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
20 weeks
期刊最新文献
The Role of Malondialdehyde (MDA) and Ferric Reducing Antioxidant Power (FRAP) in Patients with Hypertension CRISPR Target-based Single-guide RNA (sgRNA) for Diagnostic Testing of Hepatitis B Virus Association between Maternal FUT2 204A>G (rs492602) Genetic Polymorphism and Congenital Heart Disease in the Indian Population: A Study in Maternal-fetal Dyads Bioactive Compounds from Penicillium sp. Inhibit Antiapoptotic Bcl-2, Bcl-XL and Mcl-1: An in silico Study High TNF-α Levels in Active Phase Chronic Suppurative Otitis Media Caused by Gram-positive Bacteria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1