基于奇异向量分解的运动补偿残差自适应变换

Xiaoran Cao, Yun He
{"title":"基于奇异向量分解的运动补偿残差自适应变换","authors":"Xiaoran Cao, Yun He","doi":"10.1109/ICIP.2014.7025838","DOIUrl":null,"url":null,"abstract":"Video coding standards commonly use discrete cosine transform (DCT) to transform the motion compensation (M-C) residuals. However, the MC residuals have much weaker correlation than image pixels, and DCT is not the optimized transform for them. In this paper, we propose an adaptive transform structure for MC residuals. Unlike traditional approaches which use a predefined transform core, we apply singular value decomposition (SVD) on the prediction block and use the eigenvector matrices as the transform core. Experiments show that this adaptive transform is more efficient compared with the traditional approach. An average 2.0% bit rate reduction is achieved when implemented on H.265/HEVC.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"35 1","pages":"4127-4131"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Singular vector decomposition based adaptive transform for motion compensation residuals\",\"authors\":\"Xiaoran Cao, Yun He\",\"doi\":\"10.1109/ICIP.2014.7025838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video coding standards commonly use discrete cosine transform (DCT) to transform the motion compensation (M-C) residuals. However, the MC residuals have much weaker correlation than image pixels, and DCT is not the optimized transform for them. In this paper, we propose an adaptive transform structure for MC residuals. Unlike traditional approaches which use a predefined transform core, we apply singular value decomposition (SVD) on the prediction block and use the eigenvector matrices as the transform core. Experiments show that this adaptive transform is more efficient compared with the traditional approach. An average 2.0% bit rate reduction is achieved when implemented on H.265/HEVC.\",\"PeriodicalId\":6856,\"journal\":{\"name\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"35 1\",\"pages\":\"4127-4131\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2014.7025838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

视频编码标准常用离散余弦变换(DCT)对运动补偿残差进行变换。然而,残差与图像像素的相关性要弱得多,DCT并不是残差的最佳变换。本文提出了一种MC残差的自适应变换结构。与传统方法使用预定义的变换核不同,我们在预测块上应用奇异值分解(SVD),并使用特征向量矩阵作为变换核。实验表明,与传统方法相比,这种自适应变换具有更高的效率。在H.265/HEVC上实现时,比特率平均降低2.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Singular vector decomposition based adaptive transform for motion compensation residuals
Video coding standards commonly use discrete cosine transform (DCT) to transform the motion compensation (M-C) residuals. However, the MC residuals have much weaker correlation than image pixels, and DCT is not the optimized transform for them. In this paper, we propose an adaptive transform structure for MC residuals. Unlike traditional approaches which use a predefined transform core, we apply singular value decomposition (SVD) on the prediction block and use the eigenvector matrices as the transform core. Experiments show that this adaptive transform is more efficient compared with the traditional approach. An average 2.0% bit rate reduction is achieved when implemented on H.265/HEVC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint source and channel coding of view and rate scalable multi-view video Inter-view consistent hole filling in view extrapolation for multi-view image generation Cost-aware depth map estimation for Lytro camera SVM with feature selection and smooth prediction in images: Application to CAD of prostate cancer Model based clustering for 3D directional features: Application to depth image analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1