Ryan M. Francea, John F. Geisza, M. Steinera, K. Schultea, Iván Garcíab, Waldo Olavarriaa, M. Younga, Daniel J. Friedmana
{"title":"用于全局和直接光谱的高效6结太阳能电池","authors":"Ryan M. Francea, John F. Geisza, M. Steinera, K. Schultea, Iván Garcíab, Waldo Olavarriaa, M. Younga, Daniel J. Friedmana","doi":"10.1109/PVSC40753.2019.9198950","DOIUrl":null,"url":null,"abstract":"We show 6-junction inverted metamorphic solar cells with high efficiencies under both the global and direct spectrum, and discuss improvements to device components. High voltage AlGaInP subcells are demonstrated on GaAs substrates miscut 2° towards (111)B by using Sb surfactant to reduce atomic ordering. This miscut enables high voltage and low dislocation density GaInAs subcells by using atomically-ordered GaInP-based graded buffers. One-sun efficiencies of 39.2 ± 1.3% under the global spectrum and 39.4 ± 1.1% direct spectrum have been demonstrated by using these high voltage subcell components. For high efficiency under the concentrated direct spectrum, low resistance is also necessary, which requires a challenging and nonintuitive optimization of tunnel junctions and heterobarriers. Increasing the thickness of a (Al)GaInAs spacer layer between the back surface fields (BSF) and tunnel junctions (TJ) of latticemismatched subcells reduces nonlinear resistance, which implies a detrimental interaction between the BSF and TJ. Concentrator devices with optimized spacer layers show reduced effective resistance and maintain fill factor ≫ 75% at 1100 suns. Device efficiencies under the concentrated direct spectrum peak at 47.1 ± 3.2% at 143 suns.","PeriodicalId":6749,"journal":{"name":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","volume":"92 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"High efficiency 6-junction solar cells for the global and direct spectra\",\"authors\":\"Ryan M. Francea, John F. Geisza, M. Steinera, K. Schultea, Iván Garcíab, Waldo Olavarriaa, M. Younga, Daniel J. Friedmana\",\"doi\":\"10.1109/PVSC40753.2019.9198950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show 6-junction inverted metamorphic solar cells with high efficiencies under both the global and direct spectrum, and discuss improvements to device components. High voltage AlGaInP subcells are demonstrated on GaAs substrates miscut 2° towards (111)B by using Sb surfactant to reduce atomic ordering. This miscut enables high voltage and low dislocation density GaInAs subcells by using atomically-ordered GaInP-based graded buffers. One-sun efficiencies of 39.2 ± 1.3% under the global spectrum and 39.4 ± 1.1% direct spectrum have been demonstrated by using these high voltage subcell components. For high efficiency under the concentrated direct spectrum, low resistance is also necessary, which requires a challenging and nonintuitive optimization of tunnel junctions and heterobarriers. Increasing the thickness of a (Al)GaInAs spacer layer between the back surface fields (BSF) and tunnel junctions (TJ) of latticemismatched subcells reduces nonlinear resistance, which implies a detrimental interaction between the BSF and TJ. Concentrator devices with optimized spacer layers show reduced effective resistance and maintain fill factor ≫ 75% at 1100 suns. Device efficiencies under the concentrated direct spectrum peak at 47.1 ± 3.2% at 143 suns.\",\"PeriodicalId\":6749,\"journal\":{\"name\":\"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)\",\"volume\":\"92 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC40753.2019.9198950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC40753.2019.9198950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High efficiency 6-junction solar cells for the global and direct spectra
We show 6-junction inverted metamorphic solar cells with high efficiencies under both the global and direct spectrum, and discuss improvements to device components. High voltage AlGaInP subcells are demonstrated on GaAs substrates miscut 2° towards (111)B by using Sb surfactant to reduce atomic ordering. This miscut enables high voltage and low dislocation density GaInAs subcells by using atomically-ordered GaInP-based graded buffers. One-sun efficiencies of 39.2 ± 1.3% under the global spectrum and 39.4 ± 1.1% direct spectrum have been demonstrated by using these high voltage subcell components. For high efficiency under the concentrated direct spectrum, low resistance is also necessary, which requires a challenging and nonintuitive optimization of tunnel junctions and heterobarriers. Increasing the thickness of a (Al)GaInAs spacer layer between the back surface fields (BSF) and tunnel junctions (TJ) of latticemismatched subcells reduces nonlinear resistance, which implies a detrimental interaction between the BSF and TJ. Concentrator devices with optimized spacer layers show reduced effective resistance and maintain fill factor ≫ 75% at 1100 suns. Device efficiencies under the concentrated direct spectrum peak at 47.1 ± 3.2% at 143 suns.