R. Zhu, Hailin Long, Haoyu Li, Huimin Xie, Shao-hua Yin, Yongmi Wang, Libo Zhang, Shiwei Li
{"title":"粗铅的碱性精炼:一种除砷的方法及过程中砷的行为","authors":"R. Zhu, Hailin Long, Haoyu Li, Huimin Xie, Shao-hua Yin, Yongmi Wang, Libo Zhang, Shiwei Li","doi":"10.1051/metal/2021090","DOIUrl":null,"url":null,"abstract":"In this work, the alkaline refining of arsenic in crude lead was studied with a mixture of sodium hydroxide and sodium carbonate as alkaline refining agents. Taking the arsenic removal rate as the research object, the effects of reaction temperature, holding time, Na2CO3:NaOH, the dosage of refining agent were investigated. The arsenic removal rate is 79.09% under the optimum experimental conditions as follows: reaction temperature 823 K, holding time 60 min, Na2CO3:NaOH 1:4, refining agent dosage 10%. The oxidation purification mechanism of arsenic was studied by XPS, SEM-EDS, XRD and FT-IR. The results show that arsenic in the crude lead is gradually oxidized by oxygen and lead oxide during arsenic removal process, and the arsenic trioxide is eventually converted into sodium arsenate (Na3AsO4) and lead arsenate (Pb2As2O7) in the slag.","PeriodicalId":18527,"journal":{"name":"Metallurgical Research & Technology","volume":"31 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alkaline refining of crude lead: a method of arsenic removal and the behavior of arsenic in the process\",\"authors\":\"R. Zhu, Hailin Long, Haoyu Li, Huimin Xie, Shao-hua Yin, Yongmi Wang, Libo Zhang, Shiwei Li\",\"doi\":\"10.1051/metal/2021090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, the alkaline refining of arsenic in crude lead was studied with a mixture of sodium hydroxide and sodium carbonate as alkaline refining agents. Taking the arsenic removal rate as the research object, the effects of reaction temperature, holding time, Na2CO3:NaOH, the dosage of refining agent were investigated. The arsenic removal rate is 79.09% under the optimum experimental conditions as follows: reaction temperature 823 K, holding time 60 min, Na2CO3:NaOH 1:4, refining agent dosage 10%. The oxidation purification mechanism of arsenic was studied by XPS, SEM-EDS, XRD and FT-IR. The results show that arsenic in the crude lead is gradually oxidized by oxygen and lead oxide during arsenic removal process, and the arsenic trioxide is eventually converted into sodium arsenate (Na3AsO4) and lead arsenate (Pb2As2O7) in the slag.\",\"PeriodicalId\":18527,\"journal\":{\"name\":\"Metallurgical Research & Technology\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical Research & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1051/metal/2021090\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical Research & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1051/metal/2021090","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Alkaline refining of crude lead: a method of arsenic removal and the behavior of arsenic in the process
In this work, the alkaline refining of arsenic in crude lead was studied with a mixture of sodium hydroxide and sodium carbonate as alkaline refining agents. Taking the arsenic removal rate as the research object, the effects of reaction temperature, holding time, Na2CO3:NaOH, the dosage of refining agent were investigated. The arsenic removal rate is 79.09% under the optimum experimental conditions as follows: reaction temperature 823 K, holding time 60 min, Na2CO3:NaOH 1:4, refining agent dosage 10%. The oxidation purification mechanism of arsenic was studied by XPS, SEM-EDS, XRD and FT-IR. The results show that arsenic in the crude lead is gradually oxidized by oxygen and lead oxide during arsenic removal process, and the arsenic trioxide is eventually converted into sodium arsenate (Na3AsO4) and lead arsenate (Pb2As2O7) in the slag.
期刊介绍:
Metallurgical Research and Technology (MRT) is a peer-reviewed bi-monthly journal publishing original high-quality research papers in areas ranging from process metallurgy to metal product properties and applications of ferrous and non-ferrous metals and alloys, including light-metals. It covers also the materials involved in the metal processing as ores, refractories and slags.
The journal is listed in the citation index Web of Science and has an Impact Factor.
It is highly concerned by the technological innovation as a support of the metallurgical industry at a time when it has to tackle severe challenges like energy, raw materials, sustainability, environment... Strengthening and enhancing the dialogue between science and industry is at the heart of the scope of MRT. This is why it welcomes manuscripts focusing on industrial practice, as well as basic metallurgical knowledge or review articles.