{"title":"基于动态PLS框架的无偏移跟踪预测控制","authors":"Jin Xin, Wang Yue, Luo Lin","doi":"10.3390/INFO8040121","DOIUrl":null,"url":null,"abstract":"This paper develops an offset free tracking model predictive control based on a dynamic partial least square (PLS) framework. First, state space model is used as the inner model of PLS to describe the dynamic system, where subspace identification method is used to identify the inner model. Based on the obtained model, multiple independent model predictive control (MPC) controllers are designed. Due to the decoupling character of PLS, these controllers are running separately, which is suitable for distributed control framework. In addition, the increment of inner model output is considered in the cost function of MPC, which involves integral action in the controller. Hence, the offset free tracking performance is guaranteed. The results of an industry background simulation demonstrate the effectiveness of proposed method.","PeriodicalId":50362,"journal":{"name":"Information-An International Interdisciplinary Journal","volume":"39 1","pages":"121"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Offset Free Tracking Predictive Control Based on Dynamic PLS Framework\",\"authors\":\"Jin Xin, Wang Yue, Luo Lin\",\"doi\":\"10.3390/INFO8040121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops an offset free tracking model predictive control based on a dynamic partial least square (PLS) framework. First, state space model is used as the inner model of PLS to describe the dynamic system, where subspace identification method is used to identify the inner model. Based on the obtained model, multiple independent model predictive control (MPC) controllers are designed. Due to the decoupling character of PLS, these controllers are running separately, which is suitable for distributed control framework. In addition, the increment of inner model output is considered in the cost function of MPC, which involves integral action in the controller. Hence, the offset free tracking performance is guaranteed. The results of an industry background simulation demonstrate the effectiveness of proposed method.\",\"PeriodicalId\":50362,\"journal\":{\"name\":\"Information-An International Interdisciplinary Journal\",\"volume\":\"39 1\",\"pages\":\"121\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information-An International Interdisciplinary Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/INFO8040121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information-An International Interdisciplinary Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/INFO8040121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Offset Free Tracking Predictive Control Based on Dynamic PLS Framework
This paper develops an offset free tracking model predictive control based on a dynamic partial least square (PLS) framework. First, state space model is used as the inner model of PLS to describe the dynamic system, where subspace identification method is used to identify the inner model. Based on the obtained model, multiple independent model predictive control (MPC) controllers are designed. Due to the decoupling character of PLS, these controllers are running separately, which is suitable for distributed control framework. In addition, the increment of inner model output is considered in the cost function of MPC, which involves integral action in the controller. Hence, the offset free tracking performance is guaranteed. The results of an industry background simulation demonstrate the effectiveness of proposed method.