{"title":"重新审视工业气动技术——提高能源效率的创新发展","authors":"A. Rufer","doi":"10.1115/1.4054327","DOIUrl":null,"url":null,"abstract":"\n A new pneumatic cylinder assembly is proposed as an alternative to classical cylinders which are well known for their poor energetic efficiency. The new system comprises an added expansion volume which permits to recover the energy content of a filled cylinder by a real thermodynamic expansion instead of simply releasing the filled air to the atmosphere. The energetic performance of the new system is evaluated and compared with the performance of an equivalent single cylinder producing the same mechanical work. The paper explains the operation principle and properties through numeric simulation and presents a small experimental prototype.","PeriodicalId":8652,"journal":{"name":"ASME Open Journal of Engineering","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting the Industrial Pneumatic Technology—An Innovative Development for an Increased Energetic Efficiency\",\"authors\":\"A. Rufer\",\"doi\":\"10.1115/1.4054327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A new pneumatic cylinder assembly is proposed as an alternative to classical cylinders which are well known for their poor energetic efficiency. The new system comprises an added expansion volume which permits to recover the energy content of a filled cylinder by a real thermodynamic expansion instead of simply releasing the filled air to the atmosphere. The energetic performance of the new system is evaluated and compared with the performance of an equivalent single cylinder producing the same mechanical work. The paper explains the operation principle and properties through numeric simulation and presents a small experimental prototype.\",\"PeriodicalId\":8652,\"journal\":{\"name\":\"ASME Open Journal of Engineering\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME Open Journal of Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4054327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Open Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4054327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Revisiting the Industrial Pneumatic Technology—An Innovative Development for an Increased Energetic Efficiency
A new pneumatic cylinder assembly is proposed as an alternative to classical cylinders which are well known for their poor energetic efficiency. The new system comprises an added expansion volume which permits to recover the energy content of a filled cylinder by a real thermodynamic expansion instead of simply releasing the filled air to the atmosphere. The energetic performance of the new system is evaluated and compared with the performance of an equivalent single cylinder producing the same mechanical work. The paper explains the operation principle and properties through numeric simulation and presents a small experimental prototype.