利用具有伽马随机效应的聚类纵向com -泊松模型模拟毛里求斯的道路交通事故

N. M. Khan, Ashwinee Devi Soobhug, Z. Jannoo
{"title":"利用具有伽马随机效应的聚类纵向com -泊松模型模拟毛里求斯的道路交通事故","authors":"N. M. Khan, Ashwinee Devi Soobhug, Z. Jannoo","doi":"10.1080/23737484.2020.1842269","DOIUrl":null,"url":null,"abstract":"Abstract This article proposes a nonstationary clustered longitudinal model to analyze road traffic accident time series data from 2016 to 2017 in Mauritius. The Conway–Maxwell–Poisson model (COM-Poisson) is used as the baseline model with gamma-distributed random effects (CMP-G). Several time-variant explanatory variables are incorporated into the model specification link predictor to identify the likely causes of road crashes in the Mauritius. The proposed model competes with the popular Poisson gamma and log-normal mixtures when modeling over-dispersion. The model parameters namely the regression, serial, and dispersion effects, are estimated suitably by a generalized quasi-likelihood (GQL) estimation method while the serial parameter is treated as nuisance and estimated by method of moments. The asymptotic properties of the GQL estimators are discussed. A simulation study based on an integer-valued auto-regressive of order 1 structure (INAR(1)) with CMP-G distributed innovation terms, is also proposed to assess the performance of GQL based on the CMP-G. Data application is of road traffic accidents in Mauritius where some model criteria have been computed to assess the goodness of fits of the proposed model against the Poisson-gamma and Poisson-log normal mixtures.","PeriodicalId":36561,"journal":{"name":"Communications in Statistics Case Studies Data Analysis and Applications","volume":"1 1","pages":"113 - 127"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modeling road traffic accidents in Mauritius using clustered longitudinal COM-Poisson with gamma random effects\",\"authors\":\"N. M. Khan, Ashwinee Devi Soobhug, Z. Jannoo\",\"doi\":\"10.1080/23737484.2020.1842269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article proposes a nonstationary clustered longitudinal model to analyze road traffic accident time series data from 2016 to 2017 in Mauritius. The Conway–Maxwell–Poisson model (COM-Poisson) is used as the baseline model with gamma-distributed random effects (CMP-G). Several time-variant explanatory variables are incorporated into the model specification link predictor to identify the likely causes of road crashes in the Mauritius. The proposed model competes with the popular Poisson gamma and log-normal mixtures when modeling over-dispersion. The model parameters namely the regression, serial, and dispersion effects, are estimated suitably by a generalized quasi-likelihood (GQL) estimation method while the serial parameter is treated as nuisance and estimated by method of moments. The asymptotic properties of the GQL estimators are discussed. A simulation study based on an integer-valued auto-regressive of order 1 structure (INAR(1)) with CMP-G distributed innovation terms, is also proposed to assess the performance of GQL based on the CMP-G. Data application is of road traffic accidents in Mauritius where some model criteria have been computed to assess the goodness of fits of the proposed model against the Poisson-gamma and Poisson-log normal mixtures.\",\"PeriodicalId\":36561,\"journal\":{\"name\":\"Communications in Statistics Case Studies Data Analysis and Applications\",\"volume\":\"1 1\",\"pages\":\"113 - 127\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Statistics Case Studies Data Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23737484.2020.1842269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Statistics Case Studies Data Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23737484.2020.1842269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种非平稳聚类纵向模型,对毛里求斯2016 - 2017年道路交通事故时间序列数据进行分析。采用康威-麦克斯韦-泊松模型(com -泊松)作为伽马分布随机效应(CMP-G)的基线模型。几个时变解释变量被纳入模型规范链接预测器,以确定毛里求斯道路碰撞的可能原因。所提出的模型在模拟过分散时可与流行的泊松伽玛和对数正态混合相竞争。模型参数即回归效应、序列效应和离散效应,采用广义拟似然(GQL)估计方法进行适当估计,而序列参数作为干扰参数,采用矩量法进行估计。讨论了GQL估计量的渐近性质。提出了一种基于CMP-G分布式创新项的1阶整值自回归结构(INAR(1))的仿真研究,以评估基于CMP-G的GQL的性能。数据应用于毛里求斯的道路交通事故,其中计算了一些模型标准,以评估所提出的模型对泊松-伽马和泊松-对数正态混合的拟合度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling road traffic accidents in Mauritius using clustered longitudinal COM-Poisson with gamma random effects
Abstract This article proposes a nonstationary clustered longitudinal model to analyze road traffic accident time series data from 2016 to 2017 in Mauritius. The Conway–Maxwell–Poisson model (COM-Poisson) is used as the baseline model with gamma-distributed random effects (CMP-G). Several time-variant explanatory variables are incorporated into the model specification link predictor to identify the likely causes of road crashes in the Mauritius. The proposed model competes with the popular Poisson gamma and log-normal mixtures when modeling over-dispersion. The model parameters namely the regression, serial, and dispersion effects, are estimated suitably by a generalized quasi-likelihood (GQL) estimation method while the serial parameter is treated as nuisance and estimated by method of moments. The asymptotic properties of the GQL estimators are discussed. A simulation study based on an integer-valued auto-regressive of order 1 structure (INAR(1)) with CMP-G distributed innovation terms, is also proposed to assess the performance of GQL based on the CMP-G. Data application is of road traffic accidents in Mauritius where some model criteria have been computed to assess the goodness of fits of the proposed model against the Poisson-gamma and Poisson-log normal mixtures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
29
期刊最新文献
The reciprocal elastic net Detection of influential observations in high-dimensional survival data Small area estimation of trends in household living standards in Uganda using a GMANOVA-MANOVA model and repeated surveys Applications of a new loss and cost-based process capability index to electronic industries A methodological framework for imputing missing spatial data at an aggregate level and guaranteeing data privacy: the AFFINITY method; implementation in the context of the official spatial Greek census data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1