四轴飞行器致动器早期故障的集成容错控制

IF 1.6 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS International Journal of Applied Mathematics and Computer Science Pub Date : 2022-12-01 DOI:10.34768/amcs-2022-0042
Paulin Kantue, J. Pedro
{"title":"四轴飞行器致动器早期故障的集成容错控制","authors":"Paulin Kantue, J. Pedro","doi":"10.34768/amcs-2022-0042","DOIUrl":null,"url":null,"abstract":"Abstract An integrated approach to the fault-tolerant control (FTC) of a quadcopter unmanned aerial vehicle (UAV) with incipient actuator faults is presented. The framework is comprised of a radial basis function neural network (RBFNN) fault detection and diagnosis (FDD) module and a reconfigurable flight controller (RFC) based on the extremum seeking control approach. The dynamics of a quadcopter subject to incipient actuator faults are estimated using a nonlinear identification method comprising a continuous forward algorithm (CFA) and a modified golden section search (GSS) one. A time-difference-of-arrival (TDOA) method and the post-fault system estimates are used within the FDD module to compute the fault location and fault magnitude. The impact of bi-directional uncertainty and FDD detection time on the overall FTC performance and system recovery is assessed by simulating a quadcopter UAV during a trajectory tracking mission and is found to be robust against incipient actuator faults during straight and level flight and tight turns.","PeriodicalId":50339,"journal":{"name":"International Journal of Applied Mathematics and Computer Science","volume":"16 1","pages":"601 - 617"},"PeriodicalIF":1.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated Fault–Tolerant Control of a Quadcopter UAV with Incipient Actuator Faults\",\"authors\":\"Paulin Kantue, J. Pedro\",\"doi\":\"10.34768/amcs-2022-0042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract An integrated approach to the fault-tolerant control (FTC) of a quadcopter unmanned aerial vehicle (UAV) with incipient actuator faults is presented. The framework is comprised of a radial basis function neural network (RBFNN) fault detection and diagnosis (FDD) module and a reconfigurable flight controller (RFC) based on the extremum seeking control approach. The dynamics of a quadcopter subject to incipient actuator faults are estimated using a nonlinear identification method comprising a continuous forward algorithm (CFA) and a modified golden section search (GSS) one. A time-difference-of-arrival (TDOA) method and the post-fault system estimates are used within the FDD module to compute the fault location and fault magnitude. The impact of bi-directional uncertainty and FDD detection time on the overall FTC performance and system recovery is assessed by simulating a quadcopter UAV during a trajectory tracking mission and is found to be robust against incipient actuator faults during straight and level flight and tight turns.\",\"PeriodicalId\":50339,\"journal\":{\"name\":\"International Journal of Applied Mathematics and Computer Science\",\"volume\":\"16 1\",\"pages\":\"601 - 617\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics and Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.34768/amcs-2022-0042\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.34768/amcs-2022-0042","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

摘要提出了一种具有执行器早期故障的四轴飞行器容错控制的集成方法。该框架由径向基函数神经网络(RBFNN)故障检测与诊断(FDD)模块和基于极值寻优控制方法的可重构飞行控制器(RFC)组成。采用一种由连续前向算法(CFA)和改进黄金分割搜索(GSS)组成的非线性辨识方法,对四旋翼飞行器在执行器早期故障情况下的动力学特性进行了估计。在FDD模块中,采用到达时间差(TDOA)方法和故障后系统估计来计算故障位置和故障大小。通过模拟轨迹跟踪任务中的四轴飞行器,评估了双向不确定性和FDD检测时间对整体FTC性能和系统恢复的影响,并发现在直线飞行和水平飞行以及急转弯时,对于执行器的早期故障具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrated Fault–Tolerant Control of a Quadcopter UAV with Incipient Actuator Faults
Abstract An integrated approach to the fault-tolerant control (FTC) of a quadcopter unmanned aerial vehicle (UAV) with incipient actuator faults is presented. The framework is comprised of a radial basis function neural network (RBFNN) fault detection and diagnosis (FDD) module and a reconfigurable flight controller (RFC) based on the extremum seeking control approach. The dynamics of a quadcopter subject to incipient actuator faults are estimated using a nonlinear identification method comprising a continuous forward algorithm (CFA) and a modified golden section search (GSS) one. A time-difference-of-arrival (TDOA) method and the post-fault system estimates are used within the FDD module to compute the fault location and fault magnitude. The impact of bi-directional uncertainty and FDD detection time on the overall FTC performance and system recovery is assessed by simulating a quadcopter UAV during a trajectory tracking mission and is found to be robust against incipient actuator faults during straight and level flight and tight turns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
21.10%
发文量
0
审稿时长
4.2 months
期刊介绍: The International Journal of Applied Mathematics and Computer Science is a quarterly published in Poland since 1991 by the University of Zielona Góra in partnership with De Gruyter Poland (Sciendo) and Lubuskie Scientific Society, under the auspices of the Committee on Automatic Control and Robotics of the Polish Academy of Sciences. The journal strives to meet the demand for the presentation of interdisciplinary research in various fields related to control theory, applied mathematics, scientific computing and computer science. In particular, it publishes high quality original research results in the following areas: -modern control theory and practice- artificial intelligence methods and their applications- applied mathematics and mathematical optimisation techniques- mathematical methods in engineering, computer science, and biology.
期刊最新文献
Improving Security Performance of Healthcare Data in the Internet of Medical Things using a Hybrid Metaheuristic Model Robust Flat Filtering Control of a Two Degrees of Freedom Helicopter Subject to Tail Rotor Disturbances Choice of the p-norm for High Level Classification Features Pruning in Modern Convolutional Neural Networks With Local Sensitivity Analysis Travelling Waves for Low–Grade Glioma Growth and Response to A Chemotherapy Model Asts: Autonomous Switching of Task–Level Strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1