{"title":"使用第一性原理和热钙识别潜在的低弹性模量钛基合金用于生物医学应用","authors":"MN Madigoe, R. Modiba, L. Cornish","doi":"10.36303/satnt.2021cosaami.42","DOIUrl":null,"url":null,"abstract":"High alloyed β-phase stabilised titanium alloys are known to have low elastic moduli comparable to that of the human bone (≈30 GPa). The β-phase in titanium alloys exhibits an elastic modulus of about 60-80 GPa, which is nearly half that of α-phase (100-120 GPa). In this work, an attempt to develop a β-phase titanium-based alloy through first-principles calculations and Thermo-Calc calculations for biomedical applications was conducted. First-principles calculations were performed using the CASTEP code on a simple 2-atom bcc unit cell to predict the theoretical elastic modulus and mechanical stability of the Ti-Nb-Ta-Zr (TNTZ) system at 0 K. Thermo-Calc was used to determine the phase proportion diagrams of the proposed alloys at 500℃. The alloy comprised Ti-Nbx-Ta25-Zr5 (x = 5, 10, 20, 30, 40) (at.%). The theoretical results suggested that increasing niobium content introduced both mechanical (cʹ > 0) stability of the alloys. Alloy Ti-Nb5-Ta25-Zr5 gave the lowest elastic modulus of 55.23 ± 24.45 GPa which is half the elastic modulus of pure titanium (α phase). The phase proportion diagrams showed that up to 58.6 mol.% of β phase was retained at 20 at.% Nb, although the Voigt-Reuss-Hill Young’s modulus calculated from first principles increased with increasing niobium content while the α/β phase transformation temperature decreased down to 551.3℃ at 40 at.% Nb.","PeriodicalId":22035,"journal":{"name":"Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie","volume":"83 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of first principles and Thermo-Calc to identify potential low elastic modulus titanium-based alloys for biomedical applications\",\"authors\":\"MN Madigoe, R. Modiba, L. Cornish\",\"doi\":\"10.36303/satnt.2021cosaami.42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High alloyed β-phase stabilised titanium alloys are known to have low elastic moduli comparable to that of the human bone (≈30 GPa). The β-phase in titanium alloys exhibits an elastic modulus of about 60-80 GPa, which is nearly half that of α-phase (100-120 GPa). In this work, an attempt to develop a β-phase titanium-based alloy through first-principles calculations and Thermo-Calc calculations for biomedical applications was conducted. First-principles calculations were performed using the CASTEP code on a simple 2-atom bcc unit cell to predict the theoretical elastic modulus and mechanical stability of the Ti-Nb-Ta-Zr (TNTZ) system at 0 K. Thermo-Calc was used to determine the phase proportion diagrams of the proposed alloys at 500℃. The alloy comprised Ti-Nbx-Ta25-Zr5 (x = 5, 10, 20, 30, 40) (at.%). The theoretical results suggested that increasing niobium content introduced both mechanical (cʹ > 0) stability of the alloys. Alloy Ti-Nb5-Ta25-Zr5 gave the lowest elastic modulus of 55.23 ± 24.45 GPa which is half the elastic modulus of pure titanium (α phase). The phase proportion diagrams showed that up to 58.6 mol.% of β phase was retained at 20 at.% Nb, although the Voigt-Reuss-Hill Young’s modulus calculated from first principles increased with increasing niobium content while the α/β phase transformation temperature decreased down to 551.3℃ at 40 at.% Nb.\",\"PeriodicalId\":22035,\"journal\":{\"name\":\"Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie\",\"volume\":\"83 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36303/satnt.2021cosaami.42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36303/satnt.2021cosaami.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Use of first principles and Thermo-Calc to identify potential low elastic modulus titanium-based alloys for biomedical applications
High alloyed β-phase stabilised titanium alloys are known to have low elastic moduli comparable to that of the human bone (≈30 GPa). The β-phase in titanium alloys exhibits an elastic modulus of about 60-80 GPa, which is nearly half that of α-phase (100-120 GPa). In this work, an attempt to develop a β-phase titanium-based alloy through first-principles calculations and Thermo-Calc calculations for biomedical applications was conducted. First-principles calculations were performed using the CASTEP code on a simple 2-atom bcc unit cell to predict the theoretical elastic modulus and mechanical stability of the Ti-Nb-Ta-Zr (TNTZ) system at 0 K. Thermo-Calc was used to determine the phase proportion diagrams of the proposed alloys at 500℃. The alloy comprised Ti-Nbx-Ta25-Zr5 (x = 5, 10, 20, 30, 40) (at.%). The theoretical results suggested that increasing niobium content introduced both mechanical (cʹ > 0) stability of the alloys. Alloy Ti-Nb5-Ta25-Zr5 gave the lowest elastic modulus of 55.23 ± 24.45 GPa which is half the elastic modulus of pure titanium (α phase). The phase proportion diagrams showed that up to 58.6 mol.% of β phase was retained at 20 at.% Nb, although the Voigt-Reuss-Hill Young’s modulus calculated from first principles increased with increasing niobium content while the α/β phase transformation temperature decreased down to 551.3℃ at 40 at.% Nb.