{"title":"一种评估慢性疼痛的新方法:机器学习在情绪身体地图上的应用","authors":"T. Chauveau","doi":"10.3166/DEA-2021-0156","DOIUrl":null,"url":null,"abstract":"Recent studies proposed that understanding the connection between emotional states, pain and bodily sensations might help in the understanding of chronic pain conditions. In the targeted article, the authors developed a mobile platform dedicated to chronic back pain patients in order to measure pain, emotions and associated bodily feelings in their daily life conditions. Applying machine learning, they developed two predictive models of future pain.","PeriodicalId":11303,"journal":{"name":"Douleur Et Analgesie","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Way to Assess Chronic Pain: Application of Machine Learning on Emotional Body Maps\",\"authors\":\"T. Chauveau\",\"doi\":\"10.3166/DEA-2021-0156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent studies proposed that understanding the connection between emotional states, pain and bodily sensations might help in the understanding of chronic pain conditions. In the targeted article, the authors developed a mobile platform dedicated to chronic back pain patients in order to measure pain, emotions and associated bodily feelings in their daily life conditions. Applying machine learning, they developed two predictive models of future pain.\",\"PeriodicalId\":11303,\"journal\":{\"name\":\"Douleur Et Analgesie\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Douleur Et Analgesie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3166/DEA-2021-0156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Douleur Et Analgesie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3166/DEA-2021-0156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
A New Way to Assess Chronic Pain: Application of Machine Learning on Emotional Body Maps
Recent studies proposed that understanding the connection between emotional states, pain and bodily sensations might help in the understanding of chronic pain conditions. In the targeted article, the authors developed a mobile platform dedicated to chronic back pain patients in order to measure pain, emotions and associated bodily feelings in their daily life conditions. Applying machine learning, they developed two predictive models of future pain.
期刊介绍:
Douleur et Analgésie, première revue internationale francophone consacrée à la douleur, a été créée en 1988. De par la qualité scientifique et l’indépendance de ses publications, ce trimestriel a reçu d’emblée un accueil favorable auprès des chercheurs et cliniciens spécialisés dans le domaine. Á l’occasion de la reprise de la revue en 2006 par les Éditions Springer, le comité éditorial a souhaité s’ouvrir davantage à la francophonie, y compris nord américaine, pour mieux partager les connaissances et renforcer la valeur scientifique de la revue.