基于图像压缩的蛋白质结构相似性测量方法

M. Hayashida, T. Akutsu
{"title":"基于图像压缩的蛋白质结构相似性测量方法","authors":"M. Hayashida, T. Akutsu","doi":"10.1142/9781848161092_0024","DOIUrl":null,"url":null,"abstract":"This paper proposes series of methods for measuring the similarity of protein structures. In the proposed methods, an original protein structure is transformed into a distance matrix, which is regarded as a two-dimensional image. Then, the similarity of two protein structures is measured by a kind of compression ratio of the concatenated image. We employed several image compression algorithms: JPEG, GIF, PNG, IFS, and SPC, and audio compression algorithms: MP3 and FLAC. We applied the proposed method to clustering of protein structures. The results of computational experiments suggest that SPC has the best performance.","PeriodicalId":74513,"journal":{"name":"Proceedings of the ... Asia-Pacific bioinformatics conference","volume":"31 1","pages":"221-230"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Image Compression-based Approach to Measuring the Similarity of Protein Structures\",\"authors\":\"M. Hayashida, T. Akutsu\",\"doi\":\"10.1142/9781848161092_0024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes series of methods for measuring the similarity of protein structures. In the proposed methods, an original protein structure is transformed into a distance matrix, which is regarded as a two-dimensional image. Then, the similarity of two protein structures is measured by a kind of compression ratio of the concatenated image. We employed several image compression algorithms: JPEG, GIF, PNG, IFS, and SPC, and audio compression algorithms: MP3 and FLAC. We applied the proposed method to clustering of protein structures. The results of computational experiments suggest that SPC has the best performance.\",\"PeriodicalId\":74513,\"journal\":{\"name\":\"Proceedings of the ... Asia-Pacific bioinformatics conference\",\"volume\":\"31 1\",\"pages\":\"221-230\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... Asia-Pacific bioinformatics conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9781848161092_0024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Asia-Pacific bioinformatics conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781848161092_0024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一系列测量蛋白质结构相似性的方法。在该方法中,将原始蛋白质结构转换为距离矩阵,将其视为二维图像。然后,通过对拼接图像的一种压缩比来衡量两个蛋白质结构的相似性。我们使用了几种图像压缩算法:JPEG、GIF、PNG、IFS和SPC,以及音频压缩算法:MP3和FLAC。我们将该方法应用于蛋白质结构的聚类。计算实验结果表明,SPC具有最好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image Compression-based Approach to Measuring the Similarity of Protein Structures
This paper proposes series of methods for measuring the similarity of protein structures. In the proposed methods, an original protein structure is transformed into a distance matrix, which is regarded as a two-dimensional image. Then, the similarity of two protein structures is measured by a kind of compression ratio of the concatenated image. We employed several image compression algorithms: JPEG, GIF, PNG, IFS, and SPC, and audio compression algorithms: MP3 and FLAC. We applied the proposed method to clustering of protein structures. The results of computational experiments suggest that SPC has the best performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tuning Privacy-Utility Tradeoff in Genomic Studies Using Selective SNP Hiding. The Future of Bioinformatics CHEMICAL COMPOUND CLASSIFICATION WITH AUTOMATICALLY MINED STRUCTURE PATTERNS. Predicting Nucleolar Proteins Using Support-Vector Machines Proceedings of the 6th Asia-Pacific Bioinformatics Conference, APBC 2008, 14-17 January 2008, Kyoto, Japan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1