{"title":"陷阱方法保证数据安全","authors":"D. A. Shkirdov, E. Sagatov, P. S. Dmitrenko","doi":"10.18287/1613-0073-2019-2416-189-198","DOIUrl":null,"url":null,"abstract":"This paper presents the results of data analysis from a geographically distributed honeypot network. Such honeypot servers were deployed in Samara, Rostov on Don, Crimea and the USA two years ago. Methods for processing statistics are discussed in detail for secure remote access SSH. Lists of attacking addresses are highlighted, and their geographical affiliation is determined. Rank distributions were used as the basis for statistical analysis. The intensity of requests to each of the 10 installed services was then calculated.","PeriodicalId":10486,"journal":{"name":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trap method in ensuring data security\",\"authors\":\"D. A. Shkirdov, E. Sagatov, P. S. Dmitrenko\",\"doi\":\"10.18287/1613-0073-2019-2416-189-198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the results of data analysis from a geographically distributed honeypot network. Such honeypot servers were deployed in Samara, Rostov on Don, Crimea and the USA two years ago. Methods for processing statistics are discussed in detail for secure remote access SSH. Lists of attacking addresses are highlighted, and their geographical affiliation is determined. Rank distributions were used as the basis for statistical analysis. The intensity of requests to each of the 10 installed services was then calculated.\",\"PeriodicalId\":10486,\"journal\":{\"name\":\"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/1613-0073-2019-2416-189-198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/1613-0073-2019-2416-189-198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper presents the results of data analysis from a geographically distributed honeypot network. Such honeypot servers were deployed in Samara, Rostov on Don, Crimea and the USA two years ago. Methods for processing statistics are discussed in detail for secure remote access SSH. Lists of attacking addresses are highlighted, and their geographical affiliation is determined. Rank distributions were used as the basis for statistical analysis. The intensity of requests to each of the 10 installed services was then calculated.